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ABSTRACT 

Restructuring of the electric power industry has caused dramatic changes in the use of 

transmission system. The increasing congestion conditions as well as the necessity of 

integrating renewable energy introduce new challenges and uncertainties to transmission 

operation and planning. Accurate short-term congestion forecasting facilitates market traders 

in bidding and trading activities. Cost sharing and recovery issue is a major impediment for 

long-term transmission investment to integrate renewable energy.  

In this research, a new short-term forecasting algorithm is proposed for predicting 

congestion, LMPs, and other power system variables based on the concept of system 

patterns. The advantage of this algorithm relative to standard statistical forecasting methods 

is that structural aspects underlying power market operations are exploited to reduce the 

forecasting error. The advantage relative to previously proposed structural forecasting 

methods is that data requirements are substantially reduced. Forecasting results based on a 

NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm. 

Moreover, a negotiation methodology is developed to guide transmission investment 

for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of 

investment plans and payment rate can proceed between renewable generation and 

transmission companies for cost sharing and recovery. The proposed approach is applied to 

Garver’s six bus system. The numerical results demonstrate fairness and efficiency of the 

approach, and hence can be used as guidelines for renewable energy investors. The results 

also shed light on policy-making of renewable energy subsidies. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objectives  

The integration of electricity markets and renewable energy into electric power 

systems continue to increase. Transmission operation and planning have become highly 

challenging in the new environment.  

This research is aimed to tackle two challenging issues in transmission system 

operation and planning. Specifically, the first task is the development of a short-term 

congestion and price forecasting tool to facilitate bidding and trading strategy development 

for market participants. The proposed algorithm exploits both structural and statistical 

aspects of wholesale power markets, and outperforms state-of-the-art forecasting tools.  

The second task is concerned with a new methodology to guide renewable energy 

generation and transmission companies on the negotiation of transmission investment cost 

sharing and recovery. The proposed approach based on Nash Bargaining theory gives a fair 

and efficient utility allocation in the negotiation process. The negotiation is further compared 

with a centralized planning model to provide guidance for policy makers on establishing 

appropriate renewable energy subsidies.  

In many transmission regions, congestion in wholesale power markets is managed by 

Locational Marginal Prices (LMPs), the pricing of power in accordance with the location and 

timing of its power injection into or withdrawal from the transmission grid. Congestion and 

LMP forecasts are highly important for decision-making by market operators and market 

participants.  
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In short-term transmission operation, congestion occurs when the available 

economical electricity has to be delivered to load “out-of-merit-order” due to transmission 

limitations. Transmission congestion is detrimental to power system security.  It also causes 

LMP discrepancies between the constrained and unconstrained areas, which could lead to a 

high congestion cost.  Therefore, as a result of transmission congestion, high reliability risks 

and electricity price risks are faced by system operators and market participants, respectively.  

Congestion forecasting is critical to market operators as well as market participants 

[1]. Congestion forecasting tools can be used for identification of potential congestive 

conditions, detection of the exercise of market power, and scenario-conditioned planning. 

Congestion forecasting also gives interpretable signals to electricity price behaviors, and can 

be used to induce more accurate and reliable price forecasting which assists market 

participants in making decisions for bidding and trading strategies. Therefore, accurate 

forecasts of congestion and LMP also give advantages to market traders in bidding and 

trading activities and long-term investment planning.1 

In long-term system planning, major transmission projects are needed, in the United 

States and beyond, to integrate renewable resources, primarily wind generation, located 

mostly in remote areas. The delivery of renewable energy is important for meeting the 

Renewable Portfolio Standards (RPS). As of February 2009, nearly 300,000MW of wind 

projects were waiting to be connected to the grid [2]. One factor contributing to the backlog 

                                                 

1 For example, during an internship at Genscape, Inc., the author observed first-hand that 
the customers for Genscape’s LMP forecasting services were generation companies, load-
serving entities, and utilities interested in developing daily market bidding strategies and 
improving their over-the-counter electricity trading.  
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is the difficulty in siting transmission lines due to local oppositions. For lines crossing 

multiple states, additional difficulties arise in the permitting process due to different state 

laws and regulations. However, the real issues are the uncertainties concerning who should 

bear the transmission costs and how the transmission investments should be recovered. In 

order to meet the RPS at the mandated date, these issues need to be resolved and 

transmission projects need to be completed. 

Transmission can be separated into three categories; regulated, generation 

interconnection or merchant transmission. In general, the cost responsibility of the regulated 

transmission for reliability, economic and operational performance purposes is assigned to 

the loads benefiting from the investment via a regulated rate. The generation developers bear 

transmission cost for interconnecting its proposed generation and a transmission developer 

will be responsible for its merchant transmission project [3]. But the policy-driven 

transmission to meet RPS is a new category in which cost responsibility has not been clearly 

defined. 

Currently, a RE developer has to pay the entire cost of the generation interconnection 

transmission to the interconnected Transmission Owner through a Regional Transmission 

Organization (RTO), such as PJM, ISO-New England, and New York ISO,  prior to the in-

service date of the generator. As a result, the RE developer bears the whole risk of both 

generation and transmission investments. This increases the cost to finance a RE project and 

discourage the investment. On the contrary, the authors propose a market-based approach, 

where the unavoidable risks and uncertainties due to renewable energy intermittency could 

be shared by RE developers and transmission companies. The expected generation revenue 

will be used to fund the RE and transmission projects. 
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In this dissertation, the interconnection of a RE project is accomplished by a 

Merchant Transmission (MT) project and is coordinated between a RE Generation Company 

(RE-GenCo) and a Transmission Company (TransCo). Furthermore, the recovery of their 

investments is a result of a negotiation between the two entities using the expected generation 

profit based on the market and generation performance. Hence, a RE-GenCo waiting to be 

connected to the power grid can actively seek out a TransCo who is interested in investing in 

new transmission lines if the compensation from the RE-GenCo is sufficiently attractive. 

Negotiation then can proceed considering the uncertainties associated with outputs renewable 

resources and electricity prices. An agreement is reached if satisfactory returns are achieved 

for both companies.  

The prerequisite for a successful settlement from the negotiation between a RE-

GenCo and a TransCo is the sufficient profit margins for both parties. However, it is possible 

that the expected generation revenue may not be adequate to cover the generation and 

transmission investments plus the profit margin. Under this situation, an incentive may be 

required to assure the accomplishment of these investments. However, if an incentive is 

needed, policy makers will have to deal with the questions, “What do the incentives look like 

and what would be their optimal values?” Schumacher et al. [4] report that incentive could be 

policy initiatives to promote transmission development. FERC also eases policies [5] for MT 

developers to hold auction to attract and pre-subscribe some capacity to “anchor customers.” 

Incentive can be monetary incentives such as Renewable Energy Certificates (RECs) that 

need to be purchased by LSEs to meet the RPS [6], or energy subsidies such as Investment 

Tax Credits (ITCs) and Production Tax Credits (PTCs). Using monetary incentives, RE-

GenCos could gain an additional revenue stream that facilitates the negotiation process. 
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1.2 Literature Review 

1.2.1 Short-Term Transmission Congestion Forecastin g 

Many studies have focused on electricity price forecasting. With only publicly 

available information in hand, most applicable price forecasting tools are restricted to 

statistical methods [1], [7]-[17]. For example, statistical methods are deployed to forecast the 

hourly Ontario energy price on a basis of publicly available electricity market information [7]. 

Nogales’ research in [8] is a pioneering work in the application of time series models in 

electricity price forecasting. ARIMA [9] and GARCH [10] are also used to predict electricity 

price. Meanwhile, another branch in statistical forecasting has been developed based on 

intelligent system techniques, among which neural network approaches are widely used in 

load forecasting and extended to price forecasting as well. Shahidepour in [11] primarily 

focuses on the application of Artificial Neural Network (ANN) in load and price forecasting. 

Other neural network approaches [12]-[15] are also investigated in electricity price 

forecasting. Structural models considering wholesale power market fundamentals have also 

been attempted [19]-[20].  

However, few studies have focused on congestion forecasting. Li [21] applies a 

statistical model to predict line shadow prices. EPRI [22] has developed a congestion 

forecasting model that uses sequential Monte Carlo simulation to produce a probabilistic load 

flow. The EPRI model provides congestion probabilities for transmission lines of interests, 

but it requires intensive data input to the load flow model.  

Li and Bo [23]-[24] examine LMP variation in response to load variation, and they 

predict the next binding constraint when load is increased. However, the authors also assume 
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that a particular system growth pattern exists and that load growth at each bus is proportional 

to this pattern. Most U.S. wholesale power markets operating under LMP are geographically 

large; hence, distributed loads do not necessarily exhibit proportional growth. Moreover, the 

authors’ approach has not been applied in large-scale power systems where practical issues 

of limited data availability need to be considered. 

In our study [25], a piecewise linear-affine mapping between distributed loads and 

DC-OPF system variable solutions was identified and applied to forecast congestion and 

LMPs  under the maintained assumption that complete historical information was available 

regarding the marginality (or not) of generating units and the congestion (or not) of 

transmission lines. This method is able to give an exact prediction result since it is derived 

from the core structure of a wholesale power market. However, when applied to the actual 

forecasting of large-scale wholesale power systems, data requirements become a problem. 

The needed historical generation capacity data and line flow data are either publicly 

unavailable on market operator websites or only available with some delay. Consequently, 

the correct pattern of binding constraints corresponding to any possible future load point is 

difficult to effectively identify, which in turn prevents the accurate forecasting of system 

variables.  

1.2.2 Transmission Investment for Integrating Renew able Energy 

The transmission expansion planning problem has been addressed by a number of 

researchers from technical point of view. Garces et.al proposed a bilevel approach for 

transmission planners to minimize network cost while facilitating energy trading [26]. A 

multi-objective framework is developed to handle different stakeholders’ interests [27], and 
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transmission planning models proposed in [28] and [29] take into account the demand 

uncertainty. Transmission expansion methodologies regarding the uncertainty from large-

scale wind farms are presented in [30] and [31]. Sauma and Oren [32] provide an evaluation 

method for different transmission investments based on equilibrium models with the 

consideration of interactive generation firms. 

These studies focus on solving optimal transmission investment decisions in 

centralized approaches which are usually undertaken by centralized transmission planners or 

regulatory bodies. The centralized planning is associated with a FERC approved rate method 

for the transmission developers, typically the traditional utilities, to recover their costs of 

investment. A number of rate methods have been examined in the literature. Typically, a 

postage stamp rate is adopted to recover the fixed transmission cost [33]. Different usage-

based methods are also suggested and evaluated by Pan et. al [33]. The potential fairness 

issue in usage-based methods is attempted to resolve using min-max fairness criteria [34]. In 

addition to the rate structure, Galiana et.al proposed a cost allocation methodology based on 

the principle of equivalent bilateral exchanges. The allocated cost responsibilities are then 

used to set the rates for different LSEs. Finally, different allocation and rate setting 

approaches are presented in [35]-[39]. 

Independent from the centralized planning performed by RTOs such as PJM, research 

effort has been dedicated to explore market-based transmission planning models which can 

be considered as decentralized approaches for transmission investment. Roh et al.  [40] 

proposed a coordinated transmission and generation planning model which incorporates the 

characteristics from the centralized and decentralized models. RTO acts as a coordinator 

rather than a decision maker by providing capacity signals to market participants who 
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independently decide the investment plans. Research has been conducted on merchant 

transmission projects, a market-based transmission investment in the current US electricity 

markets. Joskow and Tirole [41] examined performance attributes associated with merchant 

transmission models with the consideration of several realistic attributes of electricity 

markets and transmission networks. Salazar et al.  [42] identified the most opportunistic time 

to start a merchant transmission project from an investor point of view. In their continued 

work [43], they proposed a market-based rate design for recovering merchant transmission 

investment costs from policy makers’ point of view. 

The transmission investment model in this dissertation differs from the previous work 

in that the investment of a market-based transmission project is recovered via a negotiated 

transmission rate from a RE-GenCo to a TransCo. Negotiation results are derived and 

provide guidance for market participants in an actual negotiation process. Additionally, the 

model can be used to develop renewable energy subsidies for policy makers to design market 

incentives for promoting transmission investment and use of renewable energy resources. 

1.3 Contributions of this Dissertation 

Transmission is a critical component in power systems. Economic analysis of 

transmission system is an important task to support the decision making in short-term 

operation and planning. This dissertation is focused on the development of transmission 

congestion forecasting tool and transmission investment model for integrating renewable 

energy. The original contributions are summarized as follows: 

1. A congestion forecasting tool based on convex hull techniques 
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The proposed forecasting algorithm is a novel use of convex hull techniques to enable 

the short-term forecasting of congestion conditions, prices, and other system variables. The 

convex hull algorithm and probabilistic inclusion test effectively predict congestion patterns 

at various operating points. Compared with state-of-the-art structural forecasting models, this 

new method significantly reduces the forecasting data requirement by using only publicly 

available data but still achieves a high level of accuracy.  

2. A novel concept of system patterns to enhance the forecasting accuracy 

The forecasting algorithm proposes the new concept of system patterns as an effective 

way to take generation and transmission capacity constraints into account. This concept 

captures the core structure of wholesale power markets and hence permits more accurate 

forecasting results. The new method exploiting the system pattern concept outperforms 

traditional statistical forecasting models for large-scale power systems.  

3. A negotiation methodology for renewable energy transmission investment based on 

Nash Bargaining theory 

The proposed transmission investment model based on Nash Bargaining approach 

provides a decentralized methodology for integrating renewable energy. The negotiation 

methodology takes into account electricity market uncertainties and the intermittent nature of 

renewable energy. The negotiated results provide guidelines for renewable energy generation 

and transmission companies in sharing and recovering integration and investment cost.  

4. A new approach to evaluate renewable energy subsidy policy 

The comparison between negotiation and centralized planning addresses the issue of 

optimal subsidy policy to produce sufficient incentives for renewable energy investment. The 

optimal subsidy policy can steer the negotiated solution to a centralized solution that 
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maximizes the social surplus. The results provide important guidance for policy makers to 

establish proper renewable energy subsidies.  

1.4 Thesis Organization 

This research conducts an economic analysis for transmission operation and planning. 

Specifically for short-term transmission operation, it is intended to provide a congestion and 

price forecasting tool by analyzing the fundamentals of power markets. For long-term 

transmission planning, a systematic negotiation methodology among market participants is 

provided for renewable energy investment incorporating the stochastic nature of renewable 

resources. The comparison between the negotiation model and centralized planning model is 

a resource for decision support in policy making of renewable energy subsidies.  

Chapter 2 presents a congestion forecasting tool based on the results of [44].  A new 

short-run congestion forecasting algorithm is proposed based on the concept of system 

patterns—combinations of status flags for transmission lines and generating units. It is shown 

that the load space can be divided into convex sets within which system variables can be 

expressed as linear-affine functions of loads. Congestion forecasting is then transformed into 

the problem of identifying the correct system pattern. A convex hull algorithm is developed 

to estimate the convex sets in the load space. A point inclusion test is used to identify the 

possible system patterns and congestion conditions for a future operating point and a 

corresponding “sensitivity matrix” is used to forecast LMPs and line shadow prices. 

Forecasting results based on a NYISO case study demonstrate that the proposed forecasting 

procedure is highly efficient. 
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Chapter 3 outlines the research on transmission investment to integrate renewable 

energy. The negotiation process is analyzed for renewable energy interconnection between a 

RE-GenCo and a TransCo. Nash Bargaining theory is adopted to determine the transmission 

investment plans and RE-GenCo’s transmission payment. The negotiation methodology as 

well as its results provides an alternative means to transmission planning for integrating 

renewable energy. By modifying the included subsidies, the proposed negotiation approach 

produces results (i.e. transmission plan and rate) mirroring those from a centralized planning 

model in which the objective is to maximize the overall social surplus. The renewable energy 

subsidies can be used as an adjusting parameter to steer the investment plan derived from the 

negotiation towards an optimal plan. This result and comparison provide important guidance 

to policy makers for determining appropriate renewable energy subsidies.  

Chapter 4 provides conclusions and discusses the future research directions.  
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CHAPTER 2. SHORT-TERM TRANSMISSION CONGESTION 

FORECASTING 

2.1 Introduction 

In this chapter, a new algorithm is developed for the short-term forecasting of system 

variables in wholesale power systems with substantially reduced data requirements. This 

algorithm permits the derivation of estimated probability distributions for congestion, LMPs, 

and other DC-OPF system variable solutions in real-time markets and in forward markets 

with hour-ahead, day-ahead and week-ahead time horizons, conditional on a given 

commitment-and-line scenario that specifies a set of  generating units committed for possible 

dispatch and a set of transmission lines capable of supporting power flow. Moreover, given 

suitable availability of historical data, this scenario-conditioned forecasting algorithm can be 

generalized to a cross-scenario forecasting algorithm by the assignment of probabilities to 

different commitment-and-line scenarios.   

This new forecasting algorithm makes use of two supporting techniques in order to 

substantially reduce the amount of required data relative to [25]. The first technique is a 

method developed by Bemporad et al. [45] and Tøndel et al. [46] for dividing the parameter 

space of a Quadratic-Linear Programming (QLP) problem into convex subsets such that, 

within each convex subset, the optimal solution values can be expressed as linear-affine 

functions of the parameters. A similar technique is applied in this study to a QLP DC-OPF 

problem formulation to show that, conditional on any given commitment-and-line scenario, 

the load space can be divided into convex subsets within which the optimal DC-OPF system 
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variable solutions are linear-affine functions of load. Each convex subset corresponds to a 

unique system pattern, that is, a unique array of flags reflecting a particular pattern of binding 

minimum or maximum capacity constraints for the committed generating units and available 

transmission lines specified by the commitment-and-line scenario. 

The second technique concerns convex hull determination.  Given any collection of 

points, computational geometry [47] provides algorithms to compute the corresponding 

convex hull, i.e., the smallest convex set containing these points. Convex hull algorithms 

have been gaining popularity in the areas of computer graphics, robotics, geographic 

information systems and so forth. To date, however, they have not been applied in electricity 

market forecasting. A convex hull algorithm is used in this study to estimate the convex 

subsets of load space within which DC-OPF solutions are linear-affine functions of load 

when incomplete historical data prevent their exact determination.   

 More precisely, the proposed forecasting algorithm generates short-term forecasts for 

congestion, LMPs, and other power system variables as follows. Let L denote a vector of 

loads at some possible future operating point corresponding to a particular commitment-and-

line scenario S. A convex hull method is first used to estimate the division of load space into 

convex subsets (system pattern regions), each corresponding to a distinct historically-

observed system pattern of binding capacity constraints for the particular committed 

generating units and available transmission lines specified under S.  A probabilistic point 

inclusion test is next used to calculate the probability that L is associated with each historical 

system pattern, taking into account the imprecision with which the system pattern regions in 

load space are estimated. The congestion conditions at L are then probabilistically forecasted 

using the probability-weighted historical system patterns, and forecasts for LMPs and other 
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system variables at L are calculated using the linear-affine mapping between load and DC-

OPF system variable solutions that corresponds to each probability-weighted historical 

system pattern.  

2.2 Basic Forecasting Problem Formulation 

In electricity markets, congestion occurs when the available economical electricity 

has to be delivered to load “out-of-merit-order” due to transmission limitations. That is, 

higher-cost generation needs to be dispatched in place of cheaper generation to meet this load 

in order to avoid overload of transmission lines. In this case, the LMP levels at different 

nodes separate from each other and from the unconstrained market-clearing price. Therefore, 

congestion is a critical factor determining the formation of LMP levels. 

However, congestion patterns are difficult to anticipate since they are related to the 

network topology of power systems. Provided perfect information is available, such as 

network data, load data, and generator bidding data, a market clearing model could be 

utilized to obtain accurate forecasts of congestion conditions and prices. Nevertheless, two 

issues arise for this direct forecasting method. First, most market traders do not have direct 

access to the information that is needed to implement this method; they would have to 

depend on data published by market operators. Second, the market operators, themselves, 

would need a high degree of computational speed to carry out the required computations.  

As a result, statistical tools have been developed that tackle these two forecasting 

issues by modeling the statistical correlation between prices and explanatory factors. These 

statistical tools lack explicit consideration for congestion, partly because no effective 

approach has been developed to enable these tools to capture and express the effects of 
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congestion. Ignoring the effects of congestion makes the forecasted prices less reliable and 

difficult to interpret at operating points with abnormal price behaviors. 

Surely it is possible to glean some useful information about future possible 

congestion conditions based on statistically forecasted LMPs. However, these intuitive 

insights, based on forecasters’ experiences, cannot provide reliable congestion forecasts.  

From a cause-and-effect point of view, congestion is the cause while LMP is the effect. One 

cannot infer the cause (congestion) from the effect (LMP) since LMP is not solely driven by 

congestion. In particular, statistical LMP forecasting tools do not take into account the 

structural aspects of power markets that fundamentally drive the determination of LMPs: 

namely, the fact that LMPs are derived as solutions to optimal power flow problems subject 

to generation capacity and transmission line constraints.  

As explained more carefully in Section 2.3.1, the novel concept of a “system pattern” 

is used in this study to incorporate the structural generation capacity and transmission line 

aspects that drive congestion outcomes. The forecasting of congestion at a possible future 

operating point is thus transformed into a problem of estimating the correct system pattern at 

this operating point.  Moreover, the forecasting of prices and other system variables at this 

operating point can subsequently be undertaken using the particular linear-affine mapping 

between load and DC-OPF system variable solutions that is associated with this system 

pattern.  

This basic forecasting approach makes three simplifying assumptions. First, it is 

assumed that the forecasting of system variables at possible future operating points can be 

conditioned on a particular commitment-and-line scenario, that is, a particular generation 

commitment (designation of generating units available for dispatch) and a particular network 
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topology (designation of available transmission lines).  Second, it is assumed that a lossless 

DC-OPF problem formulation is used for the determination of LMPs and other system 

variables, implying in particular that the loss components of LMPs are neglected. Third, it is 

assumed that generator supply-offer behaviors are relatively static in the forecasting 

horizons. 

2.3 Basic Forecasting Algorithm Description 

2.3.1 System Patterns and System Pattern Regions 

At any system operating point, the number of marginal generating units and binding 

transmission constraints tends to be small compared to the number of nodes, transmission 

lines, and generating units. For example, in the Midwest Independent System Operator 

(MISO) region with 36,845 network buses and 5,575 generating units, the number of day-

ahead binding constraints is published daily and is typically observed to be less than 20 for 

an hourly interval [48]. On the other hand, high-cost units such as gas and oil units are more 

likely to become marginal units during peak hours, the number of which is modest.   

Exploiting this important characteristic of power markets, the idea of a system pattern 

is introduced consisting of a vector of flags indicating the marginal status of committed 

generating units and the congestion status of available transmission lines at any given system 

operating point; see Table 1. As long as the number of marginal generating units (labeled 0) 

and the number of congested transmission lines (labeled -1 or 1) are relatively few in number, 

the number of possible system patterns can be easily handled.  

As noted in Section 2.2, the basic congestion forecasting problem can then be 

transformed into a problem of estimating the correct system pattern for any given possible 
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future operating point. The congestion forecast is directly obtained once the system pattern is 

estimated, since the status of transmission lines is part of the system pattern. Moreover, as 

clarified below in Section 2.3.4, short-term forecasts for prices and other system variables at 

the operating point can also be obtained making use of this estimated system pattern. 

Table 1. Flags used for system patterns 

 Generating units Transmission lines 

State 
Minimum 

Capacity 

Marginal  

Unit 

Maximum 

Capacity 

Negative 

Congestion 

No  

Congestion 

Positive  

Congestion 

Flag -1 0 1 -1 0 1 

 

The proposition below provides the theoretical foundation for our proposed 

forecasting approach. The proposition uses the concept of a convex polytope for an n-

dimensional Euclidean space Rn, i.e., a region in Rn determined as the intersection of finitely 

many half-spaces in Rn. 

Proposition 1: Suppose a standard DC-OPF formulation with fixed loads and 

quadratic generator cost functions is used by a market operator to determine system variable 

solutions.  Then, conditional on any given commitment-and-line scenario S, the load space 

can be covered by convex polytopes such that: (i) the interior of each convex polytope 

corresponds to a unique system pattern; and (ii) within the interior of each convex polytope 

the system variable solutions can be expressed as linear-affine functions of the vector of 

distributed loads.  

The proof of Proposition 1, originally derived in [44], is outlined in an appendix to 

this dissertation. The proof starts with the derivation of inequality and equality constraints 

constructed from the first-order KKT conditions for a DC-OPF problem conditional on a 
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particular commitment-and-line scenario S. The inequality constraints characterize convex 

polytopes that cover the load space, where the interior of each convex polytope corresponds 

to a unique system pattern. The convex polytopes constituting the covering of the load space 

are referred to as System Pattern Regions (SPRs) for the fact that the interior of each convex 

polytope is associated with a unique system pattern.  

Within each SPR the equality constraints take the form of linear-affine equations with 

constant coefficients that describe fixed linear-affine relationships between DC-OPF system 

variable solutions and the vector of loads. The matrix of coefficients for these linear-affine 

functions gives the rates of change with regard to real-power dispatch levels for generating 

units and shadow prices for bus balance and line constraints when loads are perturbed within 

the region. This matrix is referred to below as the sensitivity matrix for this SPR.  

Figure 1 provides illustrative depictions of two SPRs, R1 and R2, together with their 

associated linear-affine mappings, when the load space is composed of two-dimensional load 

vectors L = (L1, L2). The symbol P denotes the vector of unit dispatch levels, and the symbol 

Λ  denotes the vector of dual variables.  The mappings are characterized by sensitivity 

matrices (K1, K2) and ordinate vectors (0

1K , 0

2K ) that are constant within each SPR, which 

implies that the DC-OPF solutions for P and Λ  can be expressed as fixed linear-affine 

functions of the load vector L within each SPR.  



www.manaraa.com

19 

 

0
1 1

P
K L K

 
= + Λ 

0
2 2

P
K L K

 
= + Λ 

 

Figure 1. Illustration of two system pattern regions (SPRs) in load space 

 

2.3.2 Convex Hull Estimation of Historical SPRs 

In practice, deriving the exact form of the SPRs is difficult due to limited access to 

most of the required information. This required information includes supply offer data, 

generating unit capacity data, and transmission limit data.  

This lack of information can be overcome by applying a “convex hull algorithm” to 

historical load data to estimate SPRs. The convex hull of a point set B is the smallest convex 

set that contains all the points of B [49]. A convex hull algorithm is a computational method 

for computing the convex hull of a set B.    

Each historical load point corresponding to a particular commitment-and-line 

scenario S can in principle be associated with a distinct system pattern based on 

corresponding historical data regarding the marginal status of the committed generating units 

and the congested status of the available transmission lines. The historical SPR 

corresponding to each such historically identified system pattern can then be estimated by 
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deriving the convex hull of the collection of all historical load points that have been 

associated with this system pattern.    

This study makes use of the “QuickHull algorithm” to estimate historical SPRs 

conditional on a given commitment-and-line scenario S. The QuickHull algorithm, developed 

by Barber et al. [50], is an iterative procedure for determining all of the points constituting 

the convex hull of a finite set B. At each step, points in B that are internal to the convex hull 

of B, and hence not viable as vertices of the convex hull, are identified and eliminated from 

further consideration. This process continues until no more such points can be found. 

An illustrative application of the QuickHull algorithm for a finite planar set B is 

presented in Figure 2.  The set B is first partitioned into two subsets B1 and B2 by a line lr  

connecting a left-most upper point l to a right-most lower point r, as depicted in in Figure 

2(a). More precisely, the points in B with the smallest x value are first selected and, from 

among these points, a point with a largest y value is chosen to be the left-most upper point l; 

similarly for the right-most lower point r. For each subset B1 and B2, a point z in B that is 

furthest from lr  is determined and two additional lines are constructed, lz
ur  from l to z and 

zr
uur

from z to r; see Figure 2(b). By construction, points of B that lie strictly inside the 

resulting triangle lzr are strictly interior to the convex hull of B and hence can be eliminated 

from further consideration. The points on the triangle itself are possible vertex points for the 

boundary of the convex hull of B.   
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Figure 2. Illustration of the QuickHull algorithm 
 

To continue the recursion, the above procedure is repeated for the reduced subset 

BRed of B resulting from this elimination.  Specifically, two subsets and associated triangles 

are formed as before for BRed and the points of BRed lying within the interiors of the 

resulting triangles are eliminated. If a triangle ever degenerates to a line, then all the points 

along the line lie on the boundary of the convex hull of B by construction. For example, in 

Figure 2(c) the endpoints r and m of the line rm both lie on the boundary of the convex hull 

of B.  

 This process of elimination continues until no additional points to be eliminated can 

be found. Since B is finite, the process is guaranteed to stop in finitely many steps. All the 

convex hull points for B (boundary and interior) can be determined recursively in this manner.  

The complete convex hull for B is depicted in Figure 2(d). By construction, this convex hull 

is a planar convex polytope. 

The main advantage of the QuickHull algorithm relative to other such algorithms is 

its ability to efficiently handle high-dimensional sets B by reducing computational 
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requirements [51]. The QuickHull algorithm has been widely used in scientific applications 

and appears to be the algorithm of choice for higher-dimensional convex hull computing [52]. 

2.3.3 Basic Point Inclusion Test 

 Suppose the load space has been divided up into estimated SPRs whose interiors 

correspond to distinct system patterns, conditional on a given commitment-and-line scenario 

S. Consider, now, the task of forecasting congestion conditions at some future operating point 

a short time into the future for which scenario S again obtains. The essence of this forecasting 

problem is the detection of the correct SPR for this future operating point. If the correct SPR 

can be detected, then congested conditions can be inferred directly from the corresponding 

system pattern. 

This detection is undertaken in this study by means of a “point inclusion test”. The 

basic point inclusion test used in this study is illustrated in Figure 3 for an SPR in a load 

plane. Recall that each SPR takes the form of a convex polytope, i.e., a region expressable as 

the intersection of half-spaces; hence each SPR has flat faces with straight edges. Let the 

normal vectors pointing towards the interior of the SPR be constructed for each edge of the 

SPR. Now consider the depicted point P1, and let 
1aP

uuur  denote the vector directed from the 

vertex a to the point P1. The dot product between 
1aP

uuur  and each normal vector of each 

neighboring edge of a is greater than or equal to 0. If this is true for all vertices of the SPR, 

the point P1 is judged to be on or inside the SPR. On the other hand, one can see that P2 is 

outside the SPR since the dot product of 
2aP

uuur  and the normal vector for the neighboring edge 

connecting a to b is negative.  
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Figure 3. Illustration of the basic point inclusion test for an SPR in a load plane 

 

 As will be seen in Section 2.4, practical data-availability issues prevent the use of the 

basic point inclusion test for the exact determination of the SPR containing any possible 

future load point L. However, given a suitable probabilistic extension of this basic point 

inclusion test, the probability that any particular SPR contains L can be estimated. 

2.3.4 Linear-Affine Mapping Procedure 

Given sufficient generation and transmission information, each historical load point 

can be associated with an SPR according to the status of the generating units and 

transmission lines at the historical operating time. More precisely, given any commitment-

and-line scenario S, consider the collection of all historically observed load points obtaining 

under S.  Let this collection of historical load points be partitioned into subsets corresponding 

to distinct system patterns for scenario S.   For each load subset, use the QuickHull algorithm 

to calculate its convex hull in load space.  Each of these convex hulls then constitutes a 

distinct estimated SPR for scenario S. In principal, any future load point corresponding to 

scenario S can then be associated with one of these estimated SPRs by means of the basic 
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point inclusion test. This association permits the prediction of congestion, prices, and other 

DC-OPF system variable solutions at this load point.  

To see this more clearly, let hiY and h
iL denote matrices consisting of all historically 

observed DC-OPF system solution vectors and load vectors corresponding to a particular 

system pattern i for a particular commitment-and-line scenario S.  Let the SPR in load space 

corresponding to this system pattern, denoted by Ri, be estimated by the convex hull REi of 

the collection of all of the historically observed load vectors included inh
iL .   

By Proposition 1, the mapping between h
iY and h

iL  can be expressed in the linear-

affine form 

0h h
i i i iK LY K= +                                                     (1) 

where Ki denotes the sensitivity matrix corresponding to Ri.  Normally there will be 

multiple historical operating points corresponding to any one SPR for a given commitment-

and-line scenario S.  In this case Ordinary Least Squares (OLS) can be applied to (1) to 

obtain estimates ̂ iK  and 0ˆ
iK for iK  and 0

iK , as follows: 

( )
0

1
ˆ )

ˆ( )

(
( )

T

T T hi
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K

−

=
 
 
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X X X Y                                             (2) 

where )[ ]( h T

i
L=X 1 .   

Now let f
iL  denote a possible load vector for a future operating time that has been 

found to belong to the estimated SPR REi, as determined from a basic point inclusion test 

applied to the collection of all historically estimated SPRs corresponding to scenario S.  Then 

the forecasted vector fiY of DC-OPF system variable solutions corresponding to f
iL  can be 

calculated as 
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0ˆ ˆf f

i i i iK LY K= +                                                   (3)                                      

The above linear-affine mapping procedure is modified in Section 2.4 to 

accommodate some practical issues arising from data incompleteness. 

2.4 Extension to Probabilistic Forecasting 

Practical data availability issues arise for the implementation of the basic scenario-

conditioned forecasting algorithm outlined in Section 2.3. This section discusses how these 

issues can be addressed by means of a probabilistic extension of this basic algorithm. 

Throughout this discussion the analysis is assumed to be conditioned on a given 

commitment-and-line scenario S. 

2.4.1 Practical Data Availability Issues 

The basic scenario-conditioned forecasting algorithm proposed in Section 2.3 

assumes that historical data are available regarding binding constraints for all generating 

units and for transmission lines on an hourly basis. In actuality, however, the marginal status 

of generating units is either confidential or published with limitations. Moreover, the 

theoretical load space cannot be fully reflected by the hourly historical load data which 

represent several realizations and subsets of the complete load space. 

Due to these data limitations, in practice the set A  indexing hourly binding 

constraints cannot be completely determined. Consequently, estimates obtained for the SPRs 

could be biased. The two basic ways in which this bias could arise are illustrated in Figure 4 

for a simple two-dimensional load space. Suppose the SPR corresponding to the true binding 

constraint set A  is given by RA (area 1) in Figure 4. 
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This true SPR RA can in principle be determined by applying the basic point inclusion 

test to every possible future operating point. Suppose, however, that the practically estimated 

binding constraint set AE1 is incomplete; for example, suppose AE1 only reflects the status of 

the most frequently congested lines. Given complete historical load data, the estimated 

convex hull RE1 (area 3) would then have to be larger than the true RA
 (area 1) because AE1 is 

smaller (less restrictive) than the trueA . In fact, however, the actual estimated convex hull 

must be based on available historical load data. Since the latter is only a subset of the full 

load space, the result will be an actual estimated convex hull RE (area 2) that lies within RE1 

(area 3). In short, incompleteness of A and incompleteness of the practical load space each 

separately introduce bias in the estimate for RA, but in opposing directions.  

 

Figure 4. Convex hull estimates for SPRs can be biased 

 

What are the practical implications of this bias for our basic forecasting algorithm? 

Two possible cases need to be handled, as illustrated in Figure 5.  

Case A: Point r in Figure 5 lies in the interior of two different estimated SPRs, 

namely, RE1 and RE2 corresponding to two distinct system patterns A1 and A2. The true SPRs 

corresponding to A1 and A2 are denoted by the shaded regions RA1 and RA2, respectively. The 
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fact that the interiors of the true SPRs do not overlap follows from Proposition 1. However, 

as explained above, overlap can occur for the interiors of estimated SPRs due to bias. 

Case B: Point t in Figure 5 is actually in the true SPR RA2.  However, point t cannot 

be assigned to either of the estimated SPRs because the bias in these estimates has caused 

point t to lie outside of both of them.  

 

Figure 5. Two possible types of forecast error due to biased SPR estimates 

 

2.4.2 Probabilistic Point Inclusion Test 

To mitigate the issues arising from the two types of bias discussed in Section 2.4.1, 

mean and interval forecasting can be performed for the DC-OPF system variable solutions 

corresponding to any forecasted future load point Lf. This probabilistic forecasting can be 

implemented by estimating the probability of each SPR conditional on Lf, which can be 

characterized as a probabilistic point inclusion test. 

More precisely, let Lf denote the forecasted load at a future operating point f, and let 

Ri denote any particular SPR i. Let the collection of all historically identified SPRs be 

denoted by Rh, and let CR denote the cardinality of Rh. Suppose the probability of occurrence 
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for any SPR not in Rh is zero. Then the probability that Ri has occurred, given that Lf has been 

observed, can be expressed as: 
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( | )
|
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i i
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In practice, the various terms in (4) have to be estimated.  In this study it will be 

assumed that the prior probability ( )iP R  is an empirical prior estimated by the historical 

frequency of Ri:  namely, the number of times in the past that Ri has been observed to occur 

divided by the total number of all past SPR observations.  

The term ( )|f
iP L R  in (4) represents the probability of observing the load point Lf 

given that the true SPR is Ri.  Intuitively, this probability should be a decreasing function of 

the distance between Lf and Ri. Therefore, this probability is estimated in this study as 

follows:  
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In (5) the term Di denotes the (Euclidean) distance between Lf and Ri, and TD denotes 

the total distance calculated as the sum of the distances between Lf and each SPR in Rh. The 

normalization parameter γ in (5) can be adjusted to obtain an appropriate conditional 

probability measure, possibly by using historical data as training cases. A specification 

0γ = results in a uniform conditional probability (5) for Lf: namely, 1 divided by the 

cardinality CR of Rh. In this case (5) is independent of the distance measures Di. 

Alternatively, a specification 1γ = implies the conditional probability (5) is derived from a 

linear normalization, while 2γ = corresponds to a quadratic normalization. As will be shown 
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below, the quadratic normalization form of the conditional probability (5) results in good 

forecasts for our NYISO case study.   

Mean forecasts for the DC-OPF system variable solutions at the operating point f with 

forecasted load point Lf can then be obtained using the estimated form for the conditional 

probability assessments (4), denoted by f
iP for short. Let f

iY denote the forecasted DC-OPF 

system variable solution vector corresponding to any historical SPR Ri in Rh. The mean 

forecast fY can then be calculated as  

h

f f f
i i

i R

PY Y
∈

= ∑                                                         (6) 

A forecaster might also be interested in calculating upper and lower bounds for the 

DC-OPF system variable solutions calculated with respect to the most likely SPRs. Let nmp 

denote the forecaster’s desired cut-off number of most probable SPRs, and let MP represent 

the subset of Rh that contains these nmp most probable SPRs. Then the upper bound UBf and 

lower bound LBf for each forecasted DC-OPF system variable solution can be determined 

over the set of SPRs in MP. As a measure of dispersion, the forecaster can further consider 

the coverage probability CP, defined to be the summation of the probability assessments (4) 

for the nmp most probable SPRs. 

Finally, another alternative might be for the forecaster to consider mean forecasts 

calculated using the nmp most probable SPRs, i.e. the subset MP of Rh. For example, a 

forecaster could choose nmp=1, which would result in a point forecast for the DC-OPF 

system variable solutions based on a single most likely SPR Ri in Rh as determined from the 

estimated form of the conditional probability assessments (4). 
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2.4.3 Probabilistic Forecasting Algorithm 

Taking into account the practical data issues addressed in Sections 2.4.1and 2.4.2, our 

proposed probabilistic forecasting algorithm proceeds in four steps, as follows: 

Step 1: Perform historical data processing to identify historical system patterns. Use 

the QuickHull algorithm to estimate historical SPRs as convex hulls of historically observed 

load points corresponding to distinct historical system patterns.   

Step 2: For each historical SPR estimated in Step 1, a linear-affine mapping between 

load vectors and DC-OPF system variable solution vectors is derived using historical load 

and system variable data. The system variable solution vectors include real-power dispatch 

levels and dual variables for nodal balance and transmission line constraints. The linear-

affine mapping is characterized by a sensitivity matrix and an ordinate vector. 

Step 3: For any possible load point Lf in the near future for which system variable 

forecasts are desired, a probabilistic point inclusion test is performed. More precisely, the 

estimated form of the conditional probability distribution (4) is used to estimate the 

probability that Lf lies in each of the historical SPRs identified in Step 1.   

Step 4: The results from Steps 1-3 are used to generate probabilistic forecasts at the 

future possible operating point Lf for generation capacity and transmission congestion 

conditions (system patterns) as well as for DC-OPF system variable solutions for dispatch 

levels and dual variables (including LMPs). For example, these probabilistic forecasts could 

take the form of mean and interval forecasts, or they could be point forecasts based on a most 

probable SPR. 



www.manaraa.com

31 

 

2.5 Five-Bus System: Basic Forecasting 

The input data file for the 5-bus test case included in the download of the AMES 

Wholesale Power Market Test Bed [53] is used below to illustrate basic forecasting 

algorithm outlined in Section 2.3. As depicted in Figure 6, this 5-bus test case has six 

transmission lines (TL1-TL6), five generation units (G1-G5), and three load-serving entities 

(LSE 1-LSE 3).  

The AMES test bed implements a wholesale power market operating over a 

transmission network with congestion managed by LMP [54]. Profit-seeking generation units 

in AMES are able to learn over time how to report their supply offers based on their past 

profit outcomes. In this study, however, it is assumed that each generation unit reports its true 

cost and capacity attributes to the ISO each day for the day-ahead energy market.  

The load data for our 5-bus case study are scaled-down time-varying loads derived 

from load data available at the MISO website [55]. Using this load data, AMES was run for 

365 simulated days in order to determine historical system patterns s. The sensitivity matrix 

and ordinate vector for each of these patterns was then calculated. System pattern 

determination and system variable prediction were carried out for various possible distributed 

load patterns. These steps are explained more carefully in the following subsections.  
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Figure 6. 5-bus network 

 

2.5.1 Historical System Patterns and the Correspond ing Sensitivity 

Matrices 

Nine system patterns were identified from the AMES output obtained from the 365 

simulated days using a year of scaled-down MISO load data. The four most frequently 

observed system patterns are displayed in Table 2.  

Table 2. The four most frequent historical system patterns for the 5-bus system 

Pattern G1 G2 G3 G4 G5 TL1 TL2 TL3 TL4 TL5 TL6 
S1 1 0 -1 -1 0 0 0 0 0 0 0 
S2 0 0 0 -1 0 1 0 0 0 0 0 
S3 1 0 0 -1 0 1 0 0 0 0 0 
S4 1 0 -1 -1 0 1 0 0 0 0 0 

 

The sensitivity matrix and ordinate vector for each of the nine historical system 

patterns were then estimated making use of actual system operating points observed for each 

historical system pattern. To illustrate, we compute the sensitivity matrix and ordinate vector 

for the dispatch level of generation unit G1 in system pattern S4. Specifically, using four 



www.manaraa.com

33 

 

historically observed operating points t = 1,…,4 associated with system pattern S4, a set of 

four linear equations was determined as follows: 

1 4 1 4 1 4 1 4
1 11 1 12 2 13 3 14P P P PJ OP L J L J L= + + +                                             (7) 

4 4 42 2 4
1 11 1 12 2 13 3

2 2
14P P P PJ L J L J LP O= + + +                                            (8) 

4 4 43 3 4
1 11 1 12 2 13 3

3 3
14P P P PJ L J L J LP O= + + +                                            (9) 

4 4 44 4 4
1 11 1 12 2 13 3

4 4
14P P P PJ L J L J LP O= + + +                                          (10) 

 

Here 1
tP  denotes the dispatch level of G1 at operating point t and t

jL  denotes the load 

level of LSE j at operating point t. These four equations determine solution values for the 

four unknown variables 4
11
PJ , 4

12
PJ , 4

13
PJ and 4

1
PO . The superscript “P4” represents the dispatch 

level P in system pattern S4. The subscript “11” denotes the dispatch level of G1 with respect 

to load level of LSE 1. The first three solution values determine one row of the block 

matrix 4PJ , hence also one row of the sensitivity matrix 4J  for system pattern S4. The last 

solution value determines one element of 4PO , hence one element of the ordinate vector 4O  

for system pattern S4. Other rows and elements can be similarly computed. The sensitivity 

matrix and ordinate vector for S4 are partially shown in Table 3. 

2.5.2 Predicting System Pattern, Congestion and Sys tem Variables 

Now suppose that a certain distributed load pattern is forecasted for the near future. 

For example, suppose the forecasted loads for buses 1 through 3 in a particular hour H are L1 

= 245.50MW, L2 = 211.64MW, and L3 = 170.17MW. An iterative assume-check procedure 

can then be undertaken to determine which system pattern corresponds to these forecasted 

load conditions. Since complete information is available for prediction, the correct system 

pattern can be found precisely. In this five bus case, the correct system pattern is found to be 
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S3.  LMP and congestion predictions generated for these forecasted loads under system 

pattern S3 are reported in Table 4, along with the actual LMPs and congestion resulting 

under this load condition.  

Table 3. Sensitivity matrix and ordinate vector for system pattern S4 (partially shown) 

OLMP JLMP 

23.83

3400.00

2729.20

994.43

52.79

 
 − 
 −
 
− 

 − 

 

0.02 0.03 0.01

8.74 7.12 2.35

7.02 5.72 1.89

2.59 2.09 0.71

0.17 0.15 0.05

− − 
 
 
 
 
 
 − 

 

OP JP 

110

6679.66

0

0

6679.30

 
 
 
 
 
 
 − 

 

0 0 0

17.21 13.89 4.23

0 0 0

0 0 0

17.92 14.68 5.14

 
 − − − 
 
 
 
  

 

OF JF 
250.00

601.57

5938.09

250.00

208.97

741.26

 
 
 
 
 
 
 
 
 

 

0 0 0

1.43 1.05 0.03

15.78 12.87 4.20

1.0 0 0

0.89 0.92 0.03

2.14 1.84 0.94

 
 − − − 
 − − −
 

− 
 − −
 
− − − 

 

 

Table 4. LMP and line congestion predictions under S3 

LMPS LMP1 LMP2 LMP3 LMP4 LMP5 

Predicted 15.14 29.50 26.79 19.29 15.84 

Actual 15.12 29.49 26.77 19.28 15.86 

Congested lines Predicted: TL1 Actual: TL1 
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The proposed approach is also tested for the prediction of LMPs and line flows over 

successive hours. Figure 7 and Figure 8 display the predicted and actual values for the power 

flow on line TL1 and the LMP at bus 2 for all 24 hours of the simulated day 363. As seen, 

the predicted values are nearly coincident with the actual values, differing only by small 

computational round-off and truncation errors. 

 

Figure 7. Predicted hourly power flow on line TL1 during day 363 

 

Figure 8. Predicted LMP at bus 2 during day 363 
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2.6 NYISO Case Study: Probabilistic Forecasting  

2.6.1 Case Study Overview 

A case study using NYISO 2007 data is reported in this section for the probabilistic 

scenario-conditioned forecasting algorithm presented in Section 2.4. NYISO has a footprint 

covering 11 load zones [56]. Short-term zonal load forecasting data and binding constraints 

data are available at the NYISO website [57].  

This forecasting algorithm is applicable for power markets using either nodal or zonal 

LMP pricing, since Proposition 1 does not rule out either form of pricing.  However, 

NYISO’s website [57] only posts daily zonal load data for its 11 load zones, which makes it 

impossible to forecast prices down to each node. In addition, historical NYISO price data 

reveal the similarity of LMPs within some of these 11 load zones, hence the negligibility of 

inter-zonal congestion between these zones.  For this reason, to reduce our computational 

burden without any significant loss of information, we chose to reduce the original 11 load 

zones for the NYISO to 8 load zones by combining Zone Millwood with Dunwoodie, and 

Zone West and Genesee with Central.   

The top 25 most frequently congested high-voltage transmission lines during 2007 for 

the NYSIO day-ahead market are studied in [58]. The focus of our case study is on the five 

most frequently congested high-voltage transmission lines during 2007, specifically, 

DUNWODIE 345 SHORE RD 345 1 (D-S), CENTRAL EAST-VC (C-V), PLSNTVLY 345 

LEEDS 345 1 (P-L), WEST CENTRAL (W-C), SPRNBRK 345 EGRDNCTR 345 1 (S-E). 

Since the marginal status of generating units is not available from the NYISO, the 
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conditioning scenario for this empirical study is taken to be the availability of these five lines. 

System patterns are thus equivalent to congestion patterns for these five lines. 

Regarding time period, we selected 12 test days consisting of the last day of each 

month in 2007. The 24 operating hours starting from 0:00 for each test day were treated as 

future operating points. Forecasted load data at these hours were used to identify system 

patterns and to generate system variable forecasts. These forecasted results were then 

compared with actual realizations to evaluate the performance of our algorithm. Due to space 

limitations, graphical illustrations are presented only for January 31st and February 28th; 

numerical results for the last days of other months are given in tables.  

All calculations for this case study were implemented using Matlab 7.8 on an Intel 

Core 2 PC with 3.0GHz CPU. The computational time for each daily forecast was about 2 

minutes. 

2.6.2 Implementation of Probabilistic Forecasting 

Historical price and load data were first processed to identify historical system 

patterns and SPRs, which is Step 1 of our probabilistic forecasting algorithm. Sorted by 

congestion patterns, about 19 to 30 historical system patterns (hence SPRs) were found for 

each forecasted day. For example, the four most frequently observed congestion patterns for 

January 31st are shown in Table 5. System patterns for other days are categorized similarly. 

Step 2 of our algorithm was then carried out. Specifically, the sensitivity matrix and 

ordinate vector for each historical SPR were estimated by ordinary least squares, making use 

of the actual system operating points observed for each historical system pattern. 
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Table 5. Four most frequent historical congestion patterns for 01/31/2007 

Pattern D-S C-V P-L S-C S-E 

P1 1 0 0 0 0 

P2 0  0 0 0 0 

P3 1 1 0 0 0 

P4 1 1 0 1 0 

In Step 3, forecasted load data for the 24 operating hours of each test day were then 

treated as possible future load points. For each of the latter points, the probabilistic point 

inclusion test detailed in Section 2.4.2 was used to assign estimated conditional probability 

assessments (4) giving the probability that this future load point was contained within each  

historical SPR. In these Step 3 calculations, we first evaluated the forecasting performance of 

three values (0, 1, and 2) for the normalization parameter γ  in (5) on the basis of historical 

data. The specification γ  = 2 gave the best forecast results for most historical days; hence, 

this value was chosen to forecast system variables for the future load points.  

Finally, in Step 4 the results of Steps 1-3 above were used to generate probabilistic 

forecasts in the form of mean and interval forecasts. For the mean forecasts, nmp was set 

equal to the cardinality CR of Rh.  For the interval forecasts, nmp was set equal to 4. 

For the interval forecasts, the size of nmp (i.e. the cut-off number of most probable 

SPRs) depends on the forecaster’s desired trade-off between accuracy and precision. A larger 

nmp tends to increase forecasting accuracy, in the sense that there is a better chance the 

correct SPR will be among the considered SPRs. On the other hand, the precision of any 

resulting mean forecast is correspondingly reduced (i.e., the variance of the forecasts across 

the considered SPRs is increased). In the current study, the specification nmp=4 is used for 



www.manaraa.com

39 

 

interval forecasts because it results in good precision without significant loss of coverage 

probability.   

2.6.3 Congestion Pattern Forecasts 

Table 6 reports the four most probable hourly congestion patterns, along with their 

associated estimated conditional probabilities and coverage probability CP (based on nmp=4), 

for every fifth hour of January 31st, 2007, starting from hour 0:00. Actual congestion patterns 

corresponding to each reported hour are highlighted in gray. As seen, for the reported hours 

the actual congestion pattern is always included among the forecasted congestion patterns 

and has the highest estimated conditional probability. For future reference, note also that the 

first entry of the actual congestion pattern, corresponding to transmission line D-S, is always 

1. This indicates that D-S is frequently congested. 

The multiple forecasted congestion patterns associated with each reported hour in 

Table 6 represent several credible congestion scenarios that could occur in the future. If a 

forecaster desires to derive one forecast for the future congestion pattern, an intuitively 

reasonable option would be to select a forecasted congestion pattern that has the highest 

associated conditional probability (4). As observed in Table 6, for the case study at hand this 

approach would result in the correct prediction of the actual congestion pattern for each 

reported hour. In general, however, more reliable forecasts for system conditions and DC-

OPF system variable solutions would be obtained by making fuller use of the conditional 

probability assessments (4) to form mean forecasts and interval forecasts. 
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Table 6. Forecasted congestion patterns versus the actual pattern on 01/31/2007 

Time Forecasted Probabilities CP Actual 

0:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3632 
0.2411 
0.2066 
0.1432 

0.9541 1   0   0   0   0 

5:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3451 
0.2043 
0.2418 
0.1486 

0.9398 1   0   0   0   0 

10:00 

1   0   0   0   0 
0   0  -1   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.4237 
0.0236 
0.3654 
0.1299 

0.9426 1   0   0   0   0 

15:00 

1   0   0   0   0 
0   0  -1   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3661 
0.0271 
0.4243 
0.1277 

0.9452 1   1   0   0   0 

20:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.4247 
0.0244 
0.3612 
0.1332 

0.9435 1   0   0   0   0 

 

2.6.4 Mean Forecasts for LMPs 

One of the benefits of congestion forecasting is to enable the more precise prediction 

of LMPs for market operators and traders in their short-term decision making. Forecasted and 

actual LMPs for Zone Central on Jan 31st and Feb 28th are shown in and Figure 9. Root Mean 

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) [11] are used as 

measures of forecast accuracy: 

24
2

1

1
RMSE ( )

24
actual forecast

i i
i

LMP LMP
=

= −∑                                       (11)                                       
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Figure 9. Actual versus mean LMP forecasts for Zone Central on 01/31/2007 
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Figure 10. Actual versus mean LMP forecasts for Zone Central on 02/28/2007 

 

Table 7 reports the RMSE and MAPE obtained using our probabilistic forecasting 

algorithm for each of our 12 test days.  Corresponding forecast results obtained using a well-

known statistical model – the Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model [10]– are also shown for comparison. As seen, except for the slightly 

smaller MAPE value attained in February using GARCH, our forecasting algorithm 

outperforms GARCH in the sense that smaller RMSE and MAPE values are obtained.  
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Table 7. RMSE and MAPE values for the twelve test days 
 

Day RMSE MAPE 

Model Proposed Alg. GARCH Proposed Alg. GARCH 

01/31/2007 5.026 8.689 0.0525 0.0902 

02/28/2007 3.393 4.465 0.0472 0.0384 

03/31/2007 4.029 7.094 0.0677 0.0727 

04/30/2007 4.853 8.297 0.0535 0.1005 

05/31/2007 7.401 14.741 0.0934 0.1198 

06/30/2007 3.439 13.359 0.0679 0.1485 

07/31/2007 3.941 11.623 0.0530 0.1082 

08/31/2007 4.076 5.913 0.0671 0.0781 

09/30/2007 3.249 6.636 0.0603 0.0862 

10/31/2007 4.135 8.561 0.0638 0.1176 

11/30/2007 6.476 7.208 0.0770 0.0855 

12/31/2007 7.051 14.185 0.0903 0.1435 

 

2.6.5 Interval Forecasts for Line Shadow Prices and  LMPs 

Interval forecasting is recommended over mean forecasting for line shadow prices. As 

clarified below, interval forecasting is more informative than mean forecasting for line 

shadow prices because the underlying attribute of interest (negative-direction, zero, or 

positive-direction congestion) is measured by a discretely-valued indicator (-1, 0, or 1). 

Hourly upper-bound and lower-bound interval forecasts for the line shadow prices on 

line D-S on January 31st and Feb 28th are shown in Figure 11and Figure 12 along with actual 
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line shadow prices for comparison.  As seen, the actual line shadow prices for most hours fall 

within the forecasted intervals.  

To better interpret these findings, consider the Table 6 results which forecast that line 

D-S (the first congestion pattern entry) will be either congested or not during hour 20 with 

varying probabilities.  If congestion is forecasted, it is in the positive direction (+1); and, 

from Figure 11, the line shadow price is estimated to be about $60/MWh. On the other hand, 

if no congestion is forecasted (0), then from Figure 11 the line shadow price is estimated to 

be $0/MWh.  

One final point for interval forecasts for line shadow prices is important to note.  For 

lines for which no congestion occurs in any of the reported congestion patterns (e.g., line S-E 

in Table 6), the corresponding upper and lower bounds for the forecasted line shadow price 

interval will both be zero, indicating zero congestion.   
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Figure 11. Actual versus interval D-S line shadow price forecasts on 01/31/2007 
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Figure 12. Actual versus interval D-S line shadow price forecasts on 02/28/2007 

 

Interval forecasts for Zone Central LMPs on January 31st and February 28th are shown 

in Figure 13 and Figure 14 along with actual LMP values for comparison. For most hours the 

actual LMP values fall within the upper and lower bounds of the forecasted intervals.    

The interval forecasting performance for line shadow prices and zonal LMPs is 

measured using the accuracy-informativeness tradeoff model developed in [59]. The 

statistical loss function LOSS is defined to be 

| |
( )

y m
ln g

g
LOSS δ

−
+=                                                         (13) 

In (13), y denotes the actual value, mdenotes the midpoint of the forecasted interval, 

and ln(g) denotes the natural logarithm of the widthg of the forecasted interval. Also, δ  

determines the tradeoff between accuracy (the first term) and informativeness (the second 

term); in this case study δ  is set to 1. Note that a smaller LOSS indicates better performance 

for interval forecasting.  
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Table 8 gives the LOSS values for the interval forecasts obtained for line shadow 

price and zonal LMPs using our probabilistic forecasting algorithm versus the forecasts 

obtained using a statistical GARCH model. As seen, our probabilistic forecasting algorithm 

results in uniformly lower LOSS values than GARCH, indicating a better forecasting 

performance.   

A possible explanation for this performance difference is that GARCH has difficulty 

handling the volatility of line shadow prices, which can abruptly change from 0 to large non-

zero values. In contrast, our probabilistic forecasting algorithm captures the physical 

meaning of these line shadow prices and this facilitates better forecasting. 
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Figure 13. Actual versus interval LMP forecasts for Zone Central on 01/31/2007 
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Figure 14. Actual versus interval LMP forecasts for Zone Central on 02/28/2007 

 

Table 8. Loss function values as a measure of interval forecasting performance  

Day Shadow Price Forecasting LMP Forecasting 

Model Proposed Alg. GARCH Proposed Alg. GARCH 

01/31/2007 3.824 4.063 2.896 4.196 

02/28/2007 3.729 3.977 2.835 3.649 

03/31/2007 3.236 3.672 2.574 3.633 

04/30/2007 3.398 3.778 3.133 4.164 

05/31/2007 3.493 4.187 3.421 4.032 

06/30/2007 3.838 3.897 3.365 4.425 

07/31/2007 2.726 3.350 2.839 4.892 

08/31/2007 2.916 3.352 2.787 3.624 

09/30/2007 3.140 3.567 2.245 3.965 

10/31/2007 2.825 3.335 2.725 3.799 

11/30/2007 3.256 3.738 3.088 3.537 

12/31/2007 3.481 3.962 3.164 3.919 
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In this study we observed that, in some months (January, May, November, and 

December), the peak-hour LMPs and line shadow prices were difficult to forecast with 

precision. This phenomenon could possibly be due to changes in the generating unit 

commitment pattern or in the transmission network topology over the forecast horizon.  To 

enhance peak-hour forecasting results, more careful collection of historical data might be 

needed to ensure that these historical data correspond to the same commitment-and-line 

scenario as the forecasted point. Alternatively, as discussed in the following Section 2.7, an 

extended cross-scenario forecast study could be attempted. 

2.7 Extension to Cross-Scenario Forecasting 

To this point, the forecasting algorithm developed in this study has been conditioned 

on a given commitment-and-line scenario S specifying a particular generating unit 

commitment pattern and a particular transmission network topology.  One interpretation of S 

is that it represents anticipated conditions at a future operating point for which forecasts are 

desired.  Another interpretation of S is that it represents a possible future system contingency 

(e.g., an N-1 outage scenario) under consideration in a contingency planning study. 

A possibly useful extension of this algorithm would be to assign probabilities to 

distinct scenarios, thus permitting the probabilistic cross-scenario blending of forecasts. 

These scenarios could be characterized not only on the basis of system patterns, i.e., 

generating unit commitments and transmission network topology, but also on the basis of a 

variety of other types of contingencies.  

As illustrated in Figure 15, for any future operating point whose system conditions 

need to be forecasted, the corresponding generating unit commitment, transmission network 
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topology, and other contingencies could be projected with some probabilities. In each of 

these projected scenarios, our scenario-conditioned forecasting algorithm could be applied to 

estimate congestion, LMPs, and other system variables.  The final forecast for any system 

variable of interest could then be the expected value of this system variable calculated across 

all projected scenarios.  

System 
Pattern 

1
System 
Pattern 

2

Historical operating points

Scenario 1 Scenario 2

New forecasted point

P2P1

 

Figure 15. Scenario-conditioned and cross-scenario forecasting 
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CHAPTER 3. TRANSMISSION INVESTMENT FOR INTEGRATING 

RENEWABLE ENERGY 

3.1 Introduction 

In this chapter, a method is proposed to support the negotiation process for renewable 

energy integration between a Renewable Energy (RE) Generation Company (RE-GenCo) and 

a Transmission Company (TransCo). The process begins with a prudent development of 

transmission plans by the two companies, taking into consideration the intermittency of 

renewable energy such as wind generation. Then the payment from the RE-GenCo to the 

TransCo is negotiated. If the payment is low, the TransCo may not fully recover its 

investment; if the payment is high, the RE-GenCo is not profitable. Hence the parties could 

fail to reach an agreement. Note that this study can also be extended to include a LSE who 

can contract to purchase a certain amount of renewable energy.  

Nash Bargaining theory is applied to determine the transmission investment plans and 

RE-GenCo’s transmission payment. The Nash bargaining solution gives a fair and efficient 

utility allocation for the two companies. The negotiation methodology as well as its results 

provides guidelines to transmission investors for integrating renewable energy under 

uncertainties. The negotiation is then compared with a centralized planning model to evaluate 

renewable energy subsides. The comparison shed light to policy makers on designing proper 

renewable energy subsidies.  
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3.2 Nomenclature 

Indices and sets: 

n Index for buses 

s Index for scenarios 

t Index for subperiods 

i Index for generators 

j Index for loads 

b Index for supply or bid blocks 

k Index for transmission lines 

o(k) Sending-end of transmission line k 

r(k) Receiving-end of transmission line k 

R Index for the bus where renewable generation will be invested 

Ir Index for the renewable generator invested by the RE-GenCo 

NΩ  Set of all system buses 

TΩ  Set of all subperiods 

SΩ  Set of all scenarios 
G
nΩ  Set of generators at Bus n 
L
nΩ  Set of loads at Bus n 
b
iΩ  Set of blocks of Generator i 
b
jΩ  Set of blocks of Load j 

TGΩ  Set of traditional generators 

RGΩ  Set of renewable generators 

ETΩ  Set of existing transmission lines 

CTΩ  Set of candidate transmission lines 

GΩ  Set of all system generators 

LΩ  Set of all system loads 

Parameters: 
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tD  Duration of subperiod t 
G
ibλ  Offer price of the bth block by the ith generator 

L
jbλ  Bid price of the bth block by the jth load 

kICT  Annualized investment cost of transmission line k 

G
ibP  Size of the bth block for the ith generator 
L
jbP  Size of the bth block for the jth load 

R
ibtsP  Size of the bth block for the ith renewable generator at subperiod t in 

scenario s 

kF  Transmission capacity of line k 

kx  Transmission reactance of line k 

SUB Parameter of renewable energy subsidies 

RGIC  Annualized investment cost of renewable generation  

RGd  Threat point of the RE-GenCo 

Td  Threat point of the TransCo 

FP  Renewable energy contract price ($/MWh) for RE-GenCo  

Decision variables: 

G
ibtsP  Electricity produced by the bth block of ith generator at subperiod t in scenario s. 

kY  Electricity consumed by the bth block of jth load at subperiod t in scenario s. 

λ  Negotiated payment from the RE-GenCo to the TransCo. 

ktsF  Power flow of transmission line k at subperiod t in scenario s. 

ntsLMP  LMP of Bus n at subperiod t in scenario s.  

3.3 Problem Formulation 

3.3.1 Overview 

This section describes the negotiation process between a RE-GenCo and a TransCo. 

Assuming that a RE-GenCo has decided to invest in a RE project at a remote location, the 
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RE-GenCo can pay a construction company to build the interconnection transmission if, in 

the business case, the RE-GenCo can demonstrate with certainty that the projected output and 

the electricity price allows it to recover both the generation and transmission investments. In 

this case, the RE-GenCo would assume all profit risks and uncertainties. However, due to the 

intermittent nature of the generation output, the RE-GenCo may not want to do so. Instead, 

the RE-GenCo may seek out a TransCo who is interested in investing in transmission, to bear 

part of the risks. The risk transfer is consummated by the RE-GenCo paying the TransCo a 

transmission rate, based on the projected generation performance and electricity prices, for 

recovering the transmission investment. The payment, measured by a rate λ  ($/MWh) 

multiplied by dispatched renewable energy (MWh), necessitates a negotiation among two 

parties. 

To simplify the discussion, several assumptions are made. First, the utilities are 

presented in annualized terms in the sense that the calculation is conducted for a typical year 

with annualized cost components. Second, maintenance costs are not explicitly modeled 

since an annualized maintenance cost can be included as part of the annual capital 

investments. Third, a risk neutral attribute is assumed so that the RE-GenCo’s utility RGU and 

the TransCo’s utility TU can be expressed as expected profits of the two participants. These 

simplifications can be easily relaxed. 

3.3.2 Negotiation Process 

Two possible outcomes can be reached during a negotiation; an agreement is reached 

or both parties walk away. For the first outcome, an agreement is reached if the RE-GenCo, 
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after paying the negotiated transmission rate, can recover its generation investment and, at 

the same time, the TransCo can recover its transmission investment.  

A bilateral contract signed with LSEs is assumed for the RE-GenCo to manage price 

fluctuations in an electricity market. This assumption is valid since a number of electric 

utilities have issued long-term (10+ years) power purchase agreements, according to [60]. 

Considering the projected generation output and a payment to the TransCo, the utility 

function of the risk-neutral RE-GenCo given a set of future scenarios SΩ is defined by 

[[ ] ]
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=∑ , representing production cost for the RE unit. Note that the 

generation investment can be included in (14). However, it is, instead, used as the RE-

GenCo’s threat point, dRG. 

If the RE-GenCo does not sign bilateral contracts with LSEs, it confronts an exposure 

to market price uncertainties. The utility function (14) can be modified to a market-based 

version M
RGU , taking into account market-based electricity prices at its bus R (i.e. Locational 

Marginal Prices (LMPs)). 
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For the TransCo, if an agreement is achieved, the profit collected by the TransCo 

from the RE-GenCo's payment with the subtraction of transmission investment can be 

expressed as  
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 (16)         
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In the alternative in which no agreement is reached, the transmission investment will 

not occur. In this case, the failure to reach an agreement results in the RE-GenCo utility 

function arriving at its threat point, RGd , which is set as the stranded RE generation 

investment, RGIC . Likewise, if the TransCo receives no payment, the TransCo’s utility 

function is settled at its threat point Td which equals 0. 

With knowledge of the utility functions, threat points and projected market conditions, 

a negotiation process is initiated on the transmission investment plan and the associated 

transmission rate/payment. The process is depicted in Figure 16. While the two companies 

negotiate, they anticipate the market operation whose results (LMPs, generation outputs and 

transmission flows) in turn will affect their attained profit. Therefore, they tend to choose the 

transmission plan and payment rate which benefit them most.  

Foresee

Negotiation variables:

Negotiated rate
Transmission plans

Operation variables:

LMPs 

Generation outputs

Transmission flows

ISO market 

operation

URG,UT,dRG,dT

Negotiation

 

Figure 16. Negotiation between the RE-GenCo and the TransCo 

 

In the negotiation process, both the RE-GenCo and the TransCo take into 

consideration the intermittent nature of the generation output, the planned transmission 

capacity with its associated investment cost, and the electricity prices. Due to the complexity 
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and inter-relationship between the negotiated results and the transmission investment plan, it 

entails a careful examination of negotiation methodology and solution, which is presented in 

Section 3.4. 

 

3.3.3 Policy implications on RE subsidies 

Optimal transmission investment plans are aimed by policy makers to maximize 

social surplus, but cannot be directly imposed on merchant transmission investment in a 

competitive market environment. A possible approach to steer the negotiated transmission 

investment plans towards the social optimal investment is to make use of the controllable RE 

subsidy parameter SUB, an important component in both companies’ utility functions. With 

everything else unchanged, the negotiated solution can be expressed as a non-linear function 

of SUB. By adjusting this RE subsidy parameter, policy makers then can possibly alter the 

negotiated solution to match the social optimal transmission investment plan. 

The social optimal solution is derived from a centralized transmission planning. The 

objective is to maximize social surplus (the operation surplus minus transmission investment 

cost, subject to operation and planning constraints). Contrasting the negotiated solution with 

the centralized solution, an optimal RE subsidy parameter can be obtained to provide 

guidance to policy makers. The details of the model construction and comparison are 

illustrated in Section 3.5. 

3.4 Negotiation: A Nash Bargaining Approach 

The result between the RE-GenCo and the TransCo in the negotiation process 

described in Section 3.3 is solved by applying the Nash Bargaining theory. Specifically, a 
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two-player Nash Bargaining problem and its solution concept are applied to the negotiation 

problem to derive the analytical model and detailed formulation. 

3.4.1 Nash Bargaining 

The research on two-person bargaining problems is initiated by Nash [61], [62]. In his 

seminal work, the bargaining problem is defined when two players, who negotiate over a 

utility possibility set U , with their threat points 1 2( , )d d d= , try to achieve a settlement 

point 1 2( , )u u u= . Nash proved that for every bargaining problem( , )dU , there is a unique 

solution 1 2( , ) ( ( , ), ( , )f d f d f d=U U U that satisfies the following four axioms. 

• Axiom 1. Invariance to linear transformation: For any monotonic linear-affine 

function H , it requires that ( ( ), ( )) ( ( , ))f H H d H f d=U U . This essentially needs the 

solution be agnostic of any linear-affine transformations, i.e. shifting and scaling. 

• Axiom 2. Symmetry: if 1 2d d= , 1 2( , )u u ∈U  and 2 1( , )u u ∈U , 

then 1 2( , ) ( , )f d f d=U U . This indicates that the solution should provide equal gains from 

the cooperation when the feasible utility set U is symmetric.  

• Axiom 3. Independence of irrelevant alternatives: for two bargaining 

problems ( , )dU and( , )d′U , if ( , )f d′ ∈U U , then ( ) ( , )f f d′=U U . It basically says that 

the addition of irrelevant alternatives does not change the solution. 

• Axiom 4. Pareto efficiency: if u and u′ are two utility points in a bargaining 

problem ( , )dU  andu u′ > , then ( , )f d u≠U . This axiom requires the pareto-optimality of 

the bargaining solution.  
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The unique bargaining solution is then obtained by solving the following optimization 

problem: 

1 2 1 2

1 2

1 1 2 2( , ) ( , )

( , )

( , ) maximize      ( )( )
u u d d

u u

f d arg u d u d
>

∈

= − −
U

U

   

                                   (17)             

The objective is named Nash product, which is later extended in n-person bargaining 

game [64]. The solution to this problem is referred to as Nash Bargaining Solution (NBS), an 

important solution concept in game theory, has the properties of simplicity and robustness. 

Empirical evidences to support NBS are indicated in experimental bargaining theory given in 

reference [65].  

3.4.2 Bargaining on RE Interconnection: An Analytic al Model 

Suppose that a RE-GenCo has decided to build a RE generating unit at some remote 

location, and financing of the capital 0($)C has been secured. The maximum available output 

of the RE unit is denoted by( )r MW , a random variable with probability density function 

(pdf) ( )g r and cumulative density function (cdf)( )G r , subject to the variability of the 

renewable resource. The model also assumes production cost ($ / )RC MWh and renewable 

energy subsidies ($ / )RS MWh are constant. 

As discussed earlier, the RE-GenCo (denoted by subscript R in the formulation) seeks 

out a TransCo (denoted by subscript T) to invest in transmission lines to interconnect the RE 

project and to deliver its output to distance load centers. The per-unit cost to the TransCo for 

the generation interconnection transmission is represented by ($ / )TC MWh . The price for the 

renewable energy is represented by a fixed payment($ / )RD MWh . The two parties negotiate 
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and try to reach an agreement on the payment rate ($ / )MWhλ  corresponding to the agreed 

upon transmission capacity( )TF MW . 

Note that the output for the RE generation RP is constrained by the lower value of the 

maximum available output r and the transmission capacityTF , i.e. 

( , )R TP min r F=                                                          (18)                    

Using these representations, the RE-GenCo’s utility is the expected profit (EPR), 

·[ ]R R R R Ru EP D S C λ= + − −                                             (19)                 

and the TransCo’s utility is given as  

·T R T Tu EP F Cλ= −                                                    (20)                      

Note that their threat points are0( ,0)C . 

    Applying Nash bargaining theory, the decision variables λ and TF  can be solved 

by maximizing the Nash Production (NP) 

, 0max [ ( , ) ] ( , )
TF R T T TNP u F C u Fλ λ λ= − ⋅                             (21) 

The solution can be found if 0Ru >  and 0Tu > . 

Take the first order derivatives with respect to λ  and TF , 

0[ ]R T
T R

u uNP
u u C

λ λ λ
∂ ∂∂

= + −
∂ ∂ ∂

                                        (22) 

0[ ]R T
T R

T T T

u uNP
u u C

F F F

∂ ∂∂
= + −

∂ ∂ ∂
                                       (23) 

Note that REP in equations (19) and (20) is a function of TF due to (18), 

( , )R r TEP E min r F= . When r>F T, min(r,FT)=FT; when r<=F T, min(r,FT)=r , the expectation 

then is  
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0

0 0

0

0

· ( ) |

[1 ( )] ( )

[1 ( )] [ ( )] ( )

( ) ( ) ( )

( )

T

T

T T

T

T

R T T r F

F

T T

F F

T T

F

T T T T T

F

T

EP F Pr r F E

F G F rg r dr

F G F d rG r G r dr

F F G F F G F G r dr

G d

r

F r r

≤= > +

= − +

= − + −

= − + −

= −

∫

∫ ∫

∫

∫

                           (24) 

From (24), the partial derivative of REP with respect to TF can be expressed as 

1 ( )R
T

T

EP
G F

F

∂
= −

∂
                                                         (25) 

The partial derivative of Ru and Tu with respect to λ and TF can be obtained, i.e.,  

/R Ru EPλ∂ ∂ = −                                                                    (26) 

/ [1 ( )] [ ]R T T R R Ru F G F D S C λ∂ ∂ = − × + − −                            (27) 

/T Ru EPλ∂ ∂ =                                                                      (28) 

/ [1 ( )]T T T Tu F G F Cλ∂ ∂ = − × −                                              (29) 

Insert equations (26)-(29) into equations (22) and (23),  

0[ ]r T R R

NP
EP u EP u C

λ
∂

= − × + −
∂

                                            (30) 

0[1 ( )][ ] [[1 ( )] ][ ]T R R R T T T R
T

NP
G F D S C u G F C u C

F
λ λ

∂
= − + − − × + − − −

∂
     

 (31)  

The solution can be found when the above two equations equal to 0. Then equation 

(30) becomes 

0[ ] 0R R TEP u C u− − =                                             (32) 

The expected RE output REP is normally positive, and hence (32) satisfies only when 

0R Tu C u− =                                                       (33) 

which is the logical outcome in which the utility is equally divided between the RE-GenCo 

and the TransCo. 
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The relation between λ and TF can be derived by replacing Ru and Tu in (33) with (19) 

and (20) 

0[ ]R R R R R T TEP D S C C EP F Cλ λ+ − − − = −                           (34) 

Re-expressing the equation, one obtains 

0

2 2
T TR R R

R

C F CD S C

EP
λ

−+ −
= −                                     (35) 

Similarly, set equation (31) equal to 0, replace 0Ru C− with Tu , and omit positiveTu . 

Equation (31) can be rewritten as 

[1 ( )][ ] 0T R R R TG F D S C C− + − − =                                  (36) 

TF  then can be solved in the following explicit form 

11 T
T

R R R

C
F G

D S C
−  

= −  + −                                 
   (37)                 

andλ can be found by replacing TF in (35) with (37).  

It is observed the negotiated payment rate λ and invested transmission capacity 

TF can be explicitly determined in this model with the consideration of the RE output 

uncertainty. However, since the transmission investment is lumpy in nature, the transmission 

plan is likely to consist of a set of discrete transmission candidates. Hence a more careful 

examination of the negotiation process and a detailed formulation to handle the lumpy 

investment are needed. 

3.4.3 Bargaining on RE Interconnection: A Detailed Formulation 

The bargaining process on RE interconnection is formulated as a bi-level 

optimization problem. The Nash product is maximized in the upper level problem, while a set 
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of lower problems represents the market operations anticipated by the RE-GenCo and the 

TransCo, for every hour t and scenario s. 

The detailed formulation is given below, with the RE-GenCo's utility RGU and the 

TransCo's utility TU denoted by (14) and (16). Suppose the negotiation is intended to connect 

the RE unit Ir at Bus r, the bargaining problem is then formulated as:  

[ ]
,

max ( , ) ( , , ) 
k

RG Rts RG T Rts k
Y

U P IC U P Y
λ

λ λ− ×
                            

     (38) 

Subject to  

( , )RG Rts RGU P ICλ ≥                                                 (39) 

 ( , , ) 0T Rts kU P Yλ ≥                                                   (40) 

CT CT
k R k

k k

M Y M Yλ
∈Ω ∈Ω

− ≤ ≤∑ ∑                                        (41) 

r
b
I r

G
Rts I bts

b

P P
∈Ω

= ∑                                                  (42)                        

where  , ,Rts T SP t s∀ ∈Ω ∀ ∈Ω =  

   max
G L L b G b

ibts jbts n j i

L L G G
jb jbts ib ibts

P P j b i b

arg P Pλ λ
∈Ω ∈Ω ∈Ω ∈Ω

−∑ ∑ ∑ ∑                            (43) 

Subject to   

| ( ) | ( )

0,   ( ),
L b
n j

L
jbts kts kts nts N

k o k n k r k nj b

P F F LMP n
= =∈Ω ∈Ω

+ − = ∀ ∈Ω∑ ∑ ∑ ∑                   (44) 

0 , ,G G TG b
ibts ib iP P i b≤ ≤ ∀ ∈Ω ∀ ∈Ω                                        (45) 

 0 , ,G G RG b
ibts ibts iP P i b≤ ≤ ∀ ∈Ω ∀ ∈Ω                                        (46) 

( ) ( )

1
[ ], ET

kts o k ts r k ts
k

F k
X

δ δ= − ∀ ∈Ω                                   (47) 

, ET
k kts kF F F k− ≤ ≤ ∀ ∈Ω                                           (48) 

( ) ( )

1
(1 ) [ ] (1 ) , CT

k kts o k ts r k ts k
k

Y M F Y M k
X

δ δ− − ≤ − − ≤ − ∀ ∈Ω                   (49) 

, CT
k k kts k kY F F Y F k− ≤ ≤ ∀ ∈Ω                                      (50) 
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The upper level problem, consisting of equations (38)-(40), reflects the requirement 

in Nash bargaining problem. Inequality (41) is an additional constraint demanding zero 

payment if no transmission line is invested. Equality (42) collects the total dispatched 

renewable energy output from all offer blocks of the RE unit which is to be interconnected. 

For each hour t and scenario s, a corresponding lower-level problem (43)-(50) reflects the 

market operation with LMPs, dispatched generation output, and transmission flow. The 

objective of the lower-level problems (43) is to maximize market operation net surplus. 

Constraint (44) enforces real power balance at each bus. Constraints (45) and (46) impose 

generation capacity limit on non-renewable and renewable generating units, respectively. 

Note that the maximum available output for some RE unit i, G
ibtsP  varies in hours and 

scenarios, allowing for the variability of renewable resources.  

Constraints (47)-(50) enforce transmission limits for existing and candidate 

transmission lines. Regarding constraint (49), the constraint is active and M is set at 0 when 

Yk = 1 or the investment decision is affirmative. However, if Yk = 0 or the investment 

decision is negative, M is set to be a large number meaning that this constraint is not active 

and therefore not considered. 

This formulation could be modified to consider market-based renewable energy price 

(LMPs) received by the RE-GenCo, if it does not enter into a bilateral contract. Its utility 

function in objective function (38) can be replaced by , ),(M
RG Rts RtsPU LMP λ  given in equation 

(15). The utility function is now determined by both the renewable energy production RtsP  

and its market price RtsLMP . 
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3.5 Implications on Renewable Subsidy Policy 

A centralized transmission planning model is described in this section that will  

provide a benchmark of social optimal transmission investment, for contrasting the 

negotiated transmission plans described in Section 3.4. Policy implications on renewable 

energy subsidies will be derived by proposing an analytical model and a detailed formulation, 

where renewable subsidies are used as a critical and adjustable parameter to steer the 

negotiated solution towards a centralized solution. 

3.5.1 Centralized Planning and Policy Implication 

Suppose a centralized planner, who performs the traditional Integrated Resource 

Planning function, decides to interconnect a RE unit by planning and investing in a new 

transmission line. Considering the benefit BR ($/MWh) from the renewable energy, the 

centralized planner needs to make a decision on the invested transmission capacity FT to 

maximize social surplus: 

maximize   
T

R R R R T T
F

SS EP B EP C F C= × − × −                             (51) 

The same notation in Section 3.4.2 is used in (51). Take the derivative of SS with 

respect to FT and set it equal 0, i.e., 

[ ]R
R R T

T T

dEPdSS
B C C

dF dF
= − −                                                    (52) 

0 [1 ( )][ ]T R R TG F B C C= − − −                                             (53) 

FT in the centralized planning model can be solved explicitly as follows, 

11 T
T

R R

C
F G

B C
−  

= −  − 
                                                (54) 
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Comparing the negotiated solution (37) with the centralized solution (54), the 

adjustable parameter of renewable energy subsidies, SR can be utilized to steer the negotiated 

solution towards the benchmark solution by equating (37) and (54), 

R R R R RD S C B C+ − = −                                              (55) 

R R RS B D= −                                                     (56) 

Equation (56) indicates that the optimal renewable energy subsidies should be set as 

the difference between the benefit from the RE generation and the payment for purchasing 

renewable energy. Of course, determining the benefit received is not a trivial task. In any 

event, policy makers can use this result as guidance for renewable energy subsidy policy, and 

establish a subsidy mechanism that provides merchant investors with sufficient market 

incentives for achieving social optimal transmission investment plans.  

3.5.2 An Illustrative Example  

A simple example is presented to illustrate the principle of the negotiation model and 

demonstrate the important role of policy in moving the bargaining solution to an idealistic 

solution that is societal beneficial.    

The bi-level negotiation process depicted in Section 3.4 is elaborated by means of the 

payoff matrix. The solutions for the negotiation model, in the two situations with or without 

renewable energy, are compared with that in the centralized model.  

As shown in Figure 17, a RE-GenCo is going to make a decision on a wind farm 

investment.  The company has two options. 
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• Option [1]: Investing at location [1] with cost $2/MW, it will be able to 

generate 19MWh wind energy at the price of $1/MWh, and pay a rate 1Rλ to 

the TransCo for transmission investment cost recovery.  

• Option [2]: Investing at location [2] with cost $2/MW, it will be able to 

generate 13MWh wind energy at the price of $1/MWh, and pay a rate 2Rλ to 

the TransCo for transmission investment cost recovery.  

Similarly, the TransCo has two options as follows: 

• Option (1): TransCo will build the transmission along path (1) with capacity 

19MW; its investment cost is $10, and TransCo receives 1Rλ from the GenCo. 

• Option (2): TransCo will build the transmission along path (2) with capacity 

13MW; its investment cost is $4, and TransCo receives 2Rλ  from the GenCo.  

 

Figure 17. Options for renewable generation and transmission investment 
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Correspondingly, LSE will receive three different levels of benefit, depending on the 

negotiation results of the RE-GenCo and the TransCo.  

• Benefit (a): If both the GenCo and the TransCo choose [1] and (1), LSE will 

have a utility level of $14. 

• Benefit (b): If they choose [2] and (2), LSE will have a utility level of $10. 

• Benefit (c): LSE will have 0 otherwise. 

In the first case there is no renewable energy subsidy, the payoff matrix for the 

GenCo and the TransCo then can be expressed as follows: 

 
TransCo 

(1) (2) 

GenCo 
[1] 1 11 2 10, )(19 R Rλ λ× − − −  (-2,-4) 
[2] (-1,-6) 2 21 1 , 4(13 )R Rλ λ× − − −  

 

Their negotiated result is the solution to maximize the product of their utilities, for 

example, 
1 1 1 [19 1 2 ]x 0]m 1a [

R R Rλ λ λ× − − − . Therefore, the solutions are 1 13.5Rλ = , 2 8Rλ = .  

The payoff matrix is then 

 
TransCo 

(1) (2) 

GenCo 
[1] (3.5,3.5) (-2,-4) 
[2] (-1,-6) (4,4) 

  

The payoff matrix for LSE is determined by the negotiated result of the GenCo and 

the TransCo.  

 
TransCo 

(1) (2) 

GenCo 
[1] 14 0 
[2] 0 10 
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Following the analysis of Nash Bargaining theory, the GenCo and the TransCo will 

choose the option ([2], (2)) which maximizes their utility levels since Nash Product of (4, 4) 

is greater than (3.5, 3.5).  

Nevertheless, considering the social surplus which now involves the utility level from 

LSE besides the two negotiators, the social optimal investment plan should be settled at ([1], 

(1)). Indeed, the total social surplus achieved by ([1], (1)), 3.5+3.5+14=21, clearly exceeds 

the total social surplus by ([2], (2)), 4+4+10=18.  

In this case, the negotiated result does not match the centralized investment plan. 

Hence, the social surplus maximization is not achieved.  

Now consider how subsidy can help to steer the negotiated result to a centralized 

social optimal solution. Suppose the RE-GenCo is subsidized by $0.5/MWh. The revenue 

stream of the RE-GenCo now includes this subsidy in addition to the original energy sale. 

Note that this subsidy will not alter the optimal solution for the centralized model; rather, it 

will only re-distribute the total social surplus. 

However, the payoff matrix for the RE-GenCo and the TransCo has been changed: 

 
TransCo 

(1) (2) 

GenCo 
[1] 1 1(19 191 2 0. ,5 10)R Rλ λ× − −+− ×  (-2,-4) 
[2] (-1,-6) 2 2(13 11 1 0.5, 43 )R Rλ λ+× − − × −  

 

The two companies negotiate the payment rate under the different investment plans, 

resulting in 1 18.25Rλ =  or 2 11.25Rλ = . 

The numerical representation of the matrix becomes 
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TransCo 

(1) (2) 

GenCo 
[1] (8.25,8.25) (-2,-4) 
[2] (-1,-6) (7.25,7.25) 

 

Apparently, Option ([1], (1)) outperforms Option ([2], (2)) in terms of greater utility 

levels for both companies. Therefore, ([1], (1)) becomes the new negotiated result in this 

subsidy environment. The subsidy $0.5/MWh indeed plays a crucial role in steering the 

negotiated solution to a centralized solution and successfully achieves social optimality.  

3.5.3 Centralized Planning: A Detailed Formulation 

The detailed formulation of the centralized planning model, which allows for 

uncertainties and realistic constraints, is presented below. 

, ,
maximize [ ]

G L S
L b b CTibts jbts k

T Gj i

L L G G
s t jb jbts ib ibts k k

P P Y t ij b b k

E D P P ICT Yλ λ∈Ω
∈Ω ∈Ω∈Ω ∈Ω ∈Ω ∈Ω

− −∑ ∑ ∑ ∑ ∑ ∑               (57) 

Subject to 

,  T St s∀ ∈Ω ∀ ∈Ω  

(44)— (50) 

The objective function is to maximize social surplus composed of operation surplus 

minus the transmission investment cost. The operation constraints are identical with the ones 

in the negotiated model as given in equations (44)-(50).    
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3.6 Numerical Results 

3.6.1 Garver’s Six-Bus Test Case 

The detailed formulation for the negotiation on RE interconnection is studied with 

Garver's six-bus test case in Figure 18, which comprises six buses, six existing transmission 

lines, three generating units, and five loads. The generator at Bus 6 is assumed to be a RE or 

wind resource. In this study, transmission lines between Bus 6 and the grid are needed to 

deliver the RE output to the load. The supply offer and demand bid data for the two 

traditional generators and 5 loads are given in Table 9. The number and size of blocks vary 

for each market participant.  

A constant production cost is assumed for the wind generator WG3 at Bus 6 and its 

cost and operation data are given in Table 10. The third column is its investment cost ICRG 

that will be used as the RE-GenCo’s threat point in the negotiation process. The renewable 

energy contract price FP is given in the fourth column. Prate denotes the nameplate capacity 

of the wind unit. The maximum possible output Pmax is characterized by the non-linear 

function between wind speed v and Prate with three parameters of WG3: cut-in, cut-out and 

rated wind speed Vci, Vco and Vrate. The non-linear feature can be described by the following 

[30]: 

0 0

( ) / ( )

0

ci

rate ci rate ci ci rate
max

rate rate co

c

v v

P v V V V V v V
P

P V v V

V o v

≤ <
 − − ≤ <

= 
≤ ≤

 <                              

(58) 
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Table 9. Generator and load data 

 Generators Loads 
Bus G Offer Size 

(MW) 
Offer Price 
($/MWh) 

L Bid Size 
(MW) 

Bid Price 
($/MWh) 

1 G1 [200;100;100] [21;23;28] L1 [40;40] [43;30] 
2    L2 [80;80;80] [54;50;48] 
3 G2 [210;210;140] [30;34;43] L3 [20;20] [30;26] 
4    L4 [80;80] [45;32] 
5    L5 [80;80;80] [50;42;30] 

 

Table 10. Wind unit data 

Bus Name 
Investment 

Cost (106$) 

Cost 

($/MWh) 
FP Prate Vci Vrate Vco 

6 WG3 10 2 12 600 4 10 22 

 

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

600

G1

G2

L1L5

L2

L4

L3

WG3

RE-GenCo TransCo
 

Figure 18. Garver’s six-bus test system 
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Table 11. Transmission data 

Name 
From 

Bus 

To 

Bus 

Reactance 

(Ω ) 

Limit 

(MW) 

Cost 

(106$) 
Type 

T1 1 2 0.4 250 - E(xisting) 

T2 1 4 0.6 220 - E 

T3 1 5 0.2 300 - E 

T4 2 3 0.2 300 - E 

T5 3 5 0.2 300 - E 

T6 2 6 0.3 150 8.0 C(andidate) 

T7 2 6 0.15 300 13 C 

T8 3 6 0.4 150 9.2 C 

T9 3 6 0.3 200 10 C 

T10 4 6 0.3 200 11 C 

 

Table 11 presents the data for the existing and candidate transmission lines. Five 

transmission investment candidates (T6-T10) are proposed with the intent to connect Bus 6 

to the grid. The pattern of transmission costs follows the economies of scale, e.g. building 

one 300-MW line between Buses 2 and 6 is less expensive than building two 150MW lines 

connecting these two buses.  

To accommodate the variability from wind resource, three scenarios of wind speed 

are constructed for four subperiods in a year, which are represented by four seasons with 

equal time duration, i.e. 
1
·8760 2190

4
h h= . The wind speed data in each scenario and 

subperiod is given in  
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Table 12. Using the function (58), the maximum possible output of WG3 can be 

calculated, and the result is shown in Table 13. Note that the wind unit normally generates 

more renewable energy during the Fall and Winter season due to ample wind resources.  

 

Table 12. Scenarios of wind speed in four subperiods 

Scenario Spring Summer Fall Winter 

S1=High wind 7 5 10 9 

S2=Medium wind 5 5 8 9 

S3=Low wind 2 1 5 8 

 

Table 13. Maximum possible output of wind energy 

Scenario Spring Summer Fall Winter 

S1=High wind 300 100 600 500 

S2=Medium wind 100 100 400 500 

S3=Low wind 0 0 100 400 

 

3.6.2 The Negotiated Solution with Renewable Energy  Contract Price FP 

All combinations of the 5 transmission candidates were examined and no negotiation 

solution is reached without a subsidy. The renewable energy subsidy is then fixed at 

SUB=$5/MWh and the negotiated solutions are examined using renewable energy contract 

price FP. The negotiated transmission investment plan YN is reported in Table 14. The 

negotiated payment λ and the attained utility levels for each party are given in Table 15. 
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Table 14. Negotiated transmission investment decision YN 

Candidate Y6 Y7 Y8 Y9 Y10 

Decision 0 1 0 0 0 

 

Table 15. Negotiated results of payment rate and attained utilities 

URG(106$) URG-ICRG(106$) UT(106$) λR ($/MWh) 

10.54 0.54 0.54 8.43 

It is observed that in the settlement, the RE-GenCo would like to pay the TransCo 

$8.43/MWh for recovering the cost of transmission investment on candidate line 7. The value 

of the 2nd and 3rd columns are identical, indicating the utility function for the RE-GenCo is 

the same as the utility function for the TransCo (i.e. equal utility split) which verifies 

equation (33) established in the analytical model for bargaining over transmission investment.  

3.6.3 The Negotiated Solution with Market-Based Pri ce LMP 

Although most renewable energy developers enter into bilateral contracts to secure a 

fixed electricity price, they can also choose to receive LMPs in market settlement. In this 

situation, its market-based utility function MRGU  is used in the negotiation process. Using the 

same subsidy parameter SUB at $5/MWh, the new investment transmission plan  M
NY  and the 

associated utility levels are shown in Table 16. 

The market-based negotiation results show more transmission investments. 

Specifically, the resulted plan suggests building 2 lines to Bus 2 and 1 line to bus 3, making 

the wind generator bus an integral part of the system. Comparing Table 16 with Table 15, a 

significantly higher utility and transmission rate are also attained. For example, UT is raised 

from $0.54 million to $11.73 million and the negotiated rate is $18.88/MWh .The increases 



www.manaraa.com

74 

 

are due primarily to higher generator revenues from LMPs than that obtained from contract 

price FP.   

Table 16. Negotiated transmission plan M
NY and utility levels 

Trans plan 
Y6 Y7 Y8 Y9 Y10 

1 1 0 1 0 

Utility  

levels 

M
RGU  M

RGU -ICRG UT λR   

21.73 11.73 11.73 18.88  

 

By investing in the 3 lines and transforming the generator bus into a system bus, the 

RE generator output are not constrained in any scenarios. Hence, the energy price or LMP for 

the RE generator output is always determined by the system marginal units and not by the 

cheaper wind generator. As a result, the expected higher generator revenue due to higher 

market-based price (LMP) allows the RE-GenCo to make higher profits and to pay for 

additional transmission.  

3.6.4 Centralized Transmission Planning 

In Section 3.5.1, an optimal RE subsidy parameter SUB is explicitly obtained for 

steering the negotiated solution on transmission investment to the social optimal solution. 

This section will examine the possibility of adjusting RE subsidy parameter to achieve the 

goal in a more comprehensive formulation.  

As shown in Section 3.5.3, optimization problem (57) is solved for the centralized 

solution targeting to maximize social surplus. The solution YC is then obtained in Table 17. 
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Table 17. Centralized transmission investment decision Yc 

Candidate Y6 Y7 Y8 Y9 Y10 

Decision 1 1 0 0 0 

 

Compared to previous negotiated results, candidate line T6 and T7 are the 2 lines to 

be invested by the centralized planning in order to maximize the social surplus. The achieved 

social surpluses under different investment decisions are compared in Table 18. The 

centralized planning gives the maximum social surplus, while the negotiated decision, when 

the RE-GenCo is settled at market-based prices—LMPs, results in the lowest social surplus. 

This is not surprising since the negotiation between the RE-GenCo and the TransCo is 

focused on their profits from the investment decision and not on the overall social surplus. YN 

gives low social surplus due to underinvestment in transmission lines (T7), and MNY  results in 

an even lower social surplus due to the overinvestment in transmission lines (T6, T7 and T9).  

Table 18. Social surplus under different investment decisions 

Decisions NY  M
NY  CY  

Social Surplus ($106) 137.96 136.38 142.55 

3.6.5 RE Subsidy Sensitivity Analysis 

This section is concerned with the possibility of adjusting the subsidies SUB to drive 

the negotiated solution towards the maximum social surplus derived from the centralized 

planning decision. The sensitivity analysis of SUB on transmission planning decisions and 

negotiated payment rate are shown in Figure 19-Figure 21.  

Note that the simulation result includes the use of negative values for SUB, 

representing penalties rather than subsides for generating renewable energy. This negative 
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value can be used to model cost overrun, high financial charges on capital, or costs incurred 

from project delay.  

Figure 19 shows that there is no negotiated transmission plan when SUB is between 

$-10/MWh and $5/MWh. When SUB is between $7/MWh and $41/MWh, the negotiated 

result is [1 1 0 0 0], which is exactly the centralized plan and the maximum social surplus 

solution. Beyond $42/MWh, even though the higher subsidies would afford more 

transmission investments, the resultant social surplus is less than the case when the subsidy is 

between $7/MWh to $41/MWh. This implies that, policy makers can always increase 

subsidies to incentivize transmission investments to attain the maximum social surplus goal. 

Nevertheless, excessive subsidies can lead to more transmission but not necessarily higher 

overall social surplus. 

 

 

Figure 19. Transmission plan variation under SUB with contract price FP 

 

However, when RE-GenCo receives LMP instead of FP, Figure 20 shows that the 

subsidy SUB has limitations to function as a controllable parameter for steering the 

negotiated transmission investment decision to the social optimal solution. This implies that, 
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due to the LMP uncertainty, subsidies may help to reach an investment decision but may be 

restricted for achieving social optimal investment plans.  

 

Figure 20. Transmission plan variation under SUB with market-based price LMP  

This observation is further demonstrated in Figure 21 and Figure 22 in which the 

negotiated transmission rate increases piece-wise linearly with subsidies. Figure 21 also 

shows step changing of Rλ  when SUB alters the negotiated transmission plans. However, 

Figure 22 exhibits only one-time step up of payment rate when subsidies are sufficient to 

form an agreement in the negotiation. No more step changing but only linear changing of Rλ  

is shown after the agreement, due to the limited controllability of subsidies.  

 

Figure 21. Payment rate variation under SUB with contract price FP 



www.manaraa.com

78 

 

 

Figure 22  Payment rate variation under SUB with market-based price LMP 

 

Based on the observations, this case study leads to the following suggestions: 

(1)  The Nash Bargaining theory guides the negotiation process. The results show that 

the RE-GenCo and the TransCo equally split utilities attained from renewable energy 

investment. The Nash Bargaining solution renders a fair and efficient utility allocation 

between the two companies. 

(2)  Subsidies are critical for RE-GenCos and TransCos to reach an investment 

agreement during the proposed negotiation process. It can also steer the negotiated solution 

to the centralized solution which achieves maximum social surplus when the electricity price 

is fixed through renewable energy contracts.  

(3)  Due to market price uncertainties, the controllability of subsidies is limited when 

RE-GenCos do not sign a renewable energy contract. This limitation needs to be recognized 

in the design of subsidies.  
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CHAPTER 4. CONCLUSION 

4.1 Summary of the Dissertation 

This dissertation addresses the issues associated with the short-term transmission 

operation and long-term transmission planning. A congestion forecasting algorithm is 

developed to assist market operators and market participants in short-run decision making. In 

long-term transmission planning, the issues of negotiation and policy making for integrating 

renewable energy are investigated.  

Short-term congestion forecasting is critical for both market traders and market 

operators. Congestion forecasting helps to explain electricity price behaviors and facilitates 

decision making of power market participants. 

In Chapter 2, this dissertation proposes a basic scenario-conditioned forecasting 

algorithm that permits the short-term forecasting of congestion, prices, and other power 

system variables conditional on a given generating unit commitment pattern and transmission 

network topology.  This basic algorithm uses the novel concept of “system pattern” to permit 

structural capacity constraints on generation and transmission to be taken into consideration  

in the forecasting procedure.   

To handle practical data-availability concerns, an extension of this basic algorithm is 

then proposed in a probabilistic framework that can be implemented on the basis of publicly 

available information. The accuracy of this probabilistic algorithm relative to a more 

traditional GARCH statistical forecasting model is demonstrated with a NYISO case study.  

A cross-scenario extension of this forecasting algorithm is proposed in which 

probabilities are assigned to different scenarios. This permits forecasters to probabilistically 
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average forecasts across distinct scenarios, allowing the use of longer forecast horizons 

and/or increasingly available historical data. 

Chapter 3 is concerned with the issue of transmission investment to integrate 

renewable energy. A negotiation methodology has been proposed between a renewable 

energy developer and a transmission company for sharing renewable energy uncertainties 

and market risks.  

The rate or payment, which is paid by the RE developer to the TransCo for 

transmission cost recovery, is established via a negotiation methodology based on Nash 

Bargaining theory. Both the analytical and numerical solutions of the transmission plan and 

payment are derived for the negotiation. The practicality of the proposed approach and the 

Nash Bargaining solution provide important investment guidance to both generation and 

transmission developers. 

If the projected generation performance and market prices do not render an agreement, 

a renewable energy subsidy may be needed to incentivize transmission projects to meet the 

RPS requirement. The proposed approach can be used by policy makers to develop a proper 

subsidy to RE developer for reaching an agreement in a negotiation.  

The findings show that transmission investment plans and payment rate can be 

effectively determined in the negotiation using the Nash bargaining approach. By comparing 

the negotiation and the centralized planning model, an optimal subsidy policy can be 

obtained to achieve maximum social surplus. It is also recognized that the controllability of 

subsidies is limited due to electricity price uncertainties when RE-GenCos sign no renewable 

energy contracts.  
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4.2 Future Work 

The two approaches for transmission operation and planning are developed under 

some assumptions. The future work can be aimed at more generalized and practical 

approaches with realistic considerations.  

In Chapter 2, the proposed algorithm is targeted for energy-only markets; future work 

should consider the incorporation of ancillary services. Future work can also explore 

additional factors, such as possible strategic supply offer behaviors by generators. Moreover, 

alternative forms for the probabilistic point inclusion test, a key building block of the 

proposed algorithm, will be systematically studied.  

In Chapter 3, future work can consider the use of more realistic scenarios for handling 

renewable energy uncertainties by exploiting more advanced scenario generation methods, 

for example, a moment-matching method developed in [66]. Future work could also be the 

extension of this approach to a multi-player negotiation that consists of multiple market 

participants including LSEs, policy makers, additional RE and transmission developers. 

Furthermore, the issue of asymmetric accessible information for different market participants 

should be examined.  
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APPENDIX.  PROOF 

Consider a wholesale power market operating over a transmission grid with N buses. 

Assume for simplicity that each bus i has one fixed load denoted by Li and one generator 

with a real power level denoted by Pi.  Suppose, also, that each generator i has a quadratic 

total cost function with coefficients ia  and ib . Finally, suppose the objective of the market 

operator in each hour is to minimize the total system cost of meeting fixed load subject to an 

injection-equals-load balance constraint, transmission line flow limits, and generator 

operating capacity limits.   

In particular, suppose the market operator attempts to achieve its objective in each 

hour by using the following standard DC-OPF formulation that assumes a lossless 

transmission system: 

2

1

min [ ]
N

i i i i
P

i

a P b P
=

+∑                                                    (59) 

1 1

. .  0 :   
N N

i i
i i

s t P L λ
= =

− =∑ ∑                                                  (60)                                

j
1

[ ] F :   ,   for 1:
N

ij i i j
i

P L j Tβ µ+ +

=

− ≤ =∑                                       (61)            

j
1

[ ] F :   ,   for 1:
N

ij i i j
i

P L j Tβ µ− −

=

− − ≤ =∑                                      (62)          

:   ,   for 1:U U
i i iP Cap i Nσ≤ =                                        (63)          

:   ,   for 1:L L
i i iP Cap i Nσ− ≤ − =                                      (64)            

In these equations, ijβ denotes the Generation Shift Factor (GSF) that measures the 

impact of 1MW injection by generator i on transmission line j.  Equality (60) represents the 

system balance constraint ensuring total generation matches total load.  The transmission line 
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flow limit constraints in two directions are expressed in (61) and (62). The last two 

inequalities (63) and (64) express each generator’s upper and lower operating capacity limits.  

Proposition 1: Consider the standard DC-OPF formulation with fixed loads and 

quadratic generator cost functions described in (59) through (64). Suppose this standard 

formulation is used by a market operator to determine system variable solutions.  Then,  

conditional on any given commitment-and-line scenario S, the load space can be covered by 

convex polytopes such that: (i) the interior of each convex polytope corresponds to a unique 

system pattern; and (ii) within the interior of each convex polytope the system variable 

solutions can be expressed as linear-affine functions of the vector of distributed loads. 

Proof Outline [44]: First note that the DC-OPF formulation can equivalently be 

expressed in the following compact form: 

1
min

2
T T

P
P HP Pα+                                                         (65) 

1 1 1 1. .   :   s t G P W S L= + Λ                                       (66) 

and, for 2 : (1 2 2 ) i N T= + +  

:   i i i iG P W S L≤ + Λ                                                    (67) 

The notation in this general QP problem is described in [44]. The KKT first-order 

necessary conditions for (65)-(67) can then be expressed as follows: 

0THP Gα+ + Λ =                                                      (68) 

1 1 1 0G P W S L− − =                                                     (69) 

 and,for 2 : (1 2 2 ),i N T= + +  

( ) 0i i i iG P W S LΛ − − =                                               (70) 

0iΛ ≥                                                               (71)  
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0i i iG P W S L− − ≤                                                    (72) 

Let A  denote the set of indices corresponding to the active (binding) equality and 

inequality constraints for the DC-OPF problem. If the number of binding unit capacity 

constraints and line limit constraints are denoted by R and M, respectively, then 

Cardinality(A ) = 1+R+M. Let GA ,WA and SA represent the matrices corresponding to A . 

Then, GA ,WA and SA  have row dimension 1+R+M and column dimension N. Let ΛA denote 

the multiplier vector corresponding toA . GivenA , equations (68)-(70)reduce to 

0G P W S L− − =A A A                                                       (73) 

( ) 0THP Gα+ + Λ =A A                                                     (74) 

Tøndel [46] defines the linear independence constraint qualification (LICQ) for an 

active set of constraints to be the assumption that these constraints are linearly independent. 

For the problem at hand, LICQ holds if GA  has full row rank. A generator that is at its upper 

capacity limit cannot at the same time be at its lower limit, hence [1 0 · · · 0] and [−1 0 · · · 0] 

never co-exist. Moreover, the GSF matrix included in GA  has linearly independent rows. 

Thus, rank(GA) = min[1+R+M, N]. It follows that GA has full row rank 1+R+M if 

1 R M N+ + ≤                                                             (75) 

The regularity condition (75) requires that the number of binding constraints 

[1+R+M] does not exceed the number of decision variables N, a necessary condition for the 

existence of the DC-OPF problem solutions assumed to exist in Proposition 1. Consequently, 

(75) automatically holds under the assumptions of Proposition 1. 

11 1( )TG H G G H W S Lα
−− −   Λ = − + +   

A A A A A A                               (76) 

11 1 1 1( ) ( )T TP H H G G H G G H W S Lα α
−− − − −   = − + + +   

A A A A A A                      (77) 

( )11 10 ( ) ,    /{1}T

i
G H G G H W S L iα

−− −   ≤ − + + ∀ ∈   
A A A A A A/                       (78) 
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11 1 1 1( ) ( ) ,   /{1}T T
i i iW S L G H H G G H G G H W S L iα α

−− − − −    + ≥ − + + + ∀ ∈     
A A A A A A A/         (79) 

Given the LICQ (75) and the diagonal form of the matrix H, 1( )TG H G−A A is 

invertible. Equations (73) and (74) can then be used to derive explicit solutions for ΛA and 

P as shown in equations (76) and (77). Note that these solutions are linear-affine functions of 

the load vector L. 

In summary, given a particular load vector L, explicit solutions have been derived for 

P  and ΛA as linear-affine functions of L. However, by construction, as long as the set A  of 

active constraints remains unchanged in a neighborhood of the load vectorL in the load space 

L, the linear-affine form of these solutions remains optimal. Such a neighborhood is given by 

the feasible region determined from (71) and (72). Substituting ΛA and P  from equations 

(76) and (77) into (71) and (72), one obtains inequalities (78) and (79). The load vectors L 

satisfying the latter inequalities are the intersection of a finite number of half-spaces in the 

load space, and hence they form a convex polytope in this load space.  
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