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ABSTRACT

Restructuring of the electric power industry has caused draohetigyes in the use of
transmission system. The increasing congestion conditions asawethe necessity of
integrating renewable energy introduce new challenges and untiegdio transmission
operation and planning. Accurate short-term congestion forecastifitafas market traders
in bidding and trading activities. Cost sharing and recovery issaengjor impediment for
long-term transmission investment to integrate renewable energy.

In this research, a new short-term forecasting algorithpraposed for predicting
congestion, LMPs, and other power system variables based on the cohcgptem
patterns. The advantage of this algorithm relative to standarstistdtforecasting methods
is that structural aspects underlying power market operatien®xploited to reduce the
forecasting error. The advantage relative to previously proposedusaiudorecasting
methods is that data requirements are substantially reducedasgtorgaesults based on a
NYISO case study demonstrate the feasibility and accuracy of the pcbalg®rithm.

Moreover, a negotiation methodology is developed to guide transmissiomewnest
for integrating renewable energy. Built on Nash Bargaining thettry negotiation of
investment plans and payment rate can proceed between renewablatigenand
transmission companies for cost sharing and recovery. The proposed apprapgled to
Garver’s six bus system. The numerical results demonstrateegai and efficiency of the
approach, and hence can be used as guidelines for renewable enesjgrs. The results

also shed light on policy-making of renewable energy subsidies.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and Objectives

The integration of electricity markets and renewable enengjy electric power
systems continue to increase. Transmission operation and planniagbbesme highly
challenging in the new environment.

This research is aimed to tackle two challenging issuesamsrission system
operation and planning. Specifically, the first task is the developrokra short-term
congestion and price forecasting tool to facilitate bidding ardintgastrategy development
for market participants. The proposed algorithm exploits both atalcand statistical
aspects of wholesale power markets, and outperforms state-of-the-aastorgtools.

The second task is concerned with a new methodology to guide renesmaitey
generation and transmission companies on the negotiation of tramsmissestment cost
sharing and recovery. The proposed approach based on Nash Bargainipgitver fair
and efficient utility allocation in the negotiation process. Thgotiation is further compared
with a centralized planning model to provide guidance for policy makemsstablishing
appropriate renewable energy subsidies.

In many transmission regions, congestion in wholesale power reaskeanaged by
Locational Marginal Prices (LMPs), the pricing of power in@dance with the location and
timing of its power injection into or withdrawal from the transsios grid. Congestion and
LMP forecasts are highly important for decision-making by madgetrators and market

participants.
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In short-term transmission operation, congestion occurs when thealdwail
economical electricity has to be delivered to load “out-of-rueder” due to transmission
limitations. Transmission congestion is detrimental to power sysezurity. It also causes
LMP discrepancies between the constrained and unconstrained aredscodid lead to a
high congestion cost. Therefore, as a result of transmissionstammgenigh reliability risks
and electricity price risks are faced by system operators and markeippats, respectively.

Congestion forecasting is critical to market operators akagemarket participants
[1]. Congestion forecasting tools can be used for identification aéngat congestive
conditions, detection of the exercise of market power, and scenaddionad planning.
Congestion forecasting also gives interpretable signals ttieiligcprice behaviors, and can
be used to induce more accurate and reliable price forecastingh vassists market
participants in making decisions for bidding and trading strategiesrefore, accurate
forecasts of congestion and LMP also give advantages to maakietrs in bidding and
trading activities and long-term investment planring.

In long-term system planning, major transmission projects aéedk in the United
States and beyond, to integrate renewable resources, primaniy generation, located
mostly in remote areas. The delivery of renewable energypnpg®rtant for meeting the
Renewable Portfolio Standards (RPS). As of February 2009, nearly 300,0Q@MWwd

projects were waiting to be connected to the grid [2]. One faotdributing to the backlog

! For example, during an internship at Genscape, Inc., the author ebsiest-hand that
the customers for Genscape’s LMP forecasting services gesreration companies, load-
serving entities, and utilities interested in developing daily niasiadding strategies and
improving their over-the-counter electricity trading.
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is the difficulty in siting transmission lines due to local opposs. For lines crossing

multiple states, additional difficulties arise in the permittprgcess due to different state
laws and regulations. However, the real issues are the untegaoncerning who should
bear the transmission costs and how the transmission investments lséaelcbvered. In

order to meet the RPS at the mandated date, these issuesonéed résolved and

transmission projects need to be completed.

Transmission can be separated into three categories; regulgéeration
interconnection or merchant transmission. In general, the cost rdsptynsf the regulated
transmission for reliability, economic and operational performancgopes is assigned to
the loads benefiting from the investment via a regulated rate. driexagion developers bear
transmission cost for interconnecting its proposed generation and aissinsntdeveloper
will be responsible for its merchant transmission project Bt the policy-driven
transmission to meet RPS is a new category in which cqgutinebility has not been clearly
defined.

Currently, a RE developer has to pay the entire cost of the ¢jendrderconnection
transmission to the interconnected Transmission Owner througlgiandk Transmission
Organization (RTO), such as PJM, ISO-New England, and New York I80r to the in-
service date of the generator. As a result, the RE developes theawhole risk of both
generation and transmission investments. This increases the fiosince a RE project and
discourage the investment. On the contrary, the authors propose a-bzasd@ approach,
where the unavoidable risks and uncertainties due to renewable émergnittency could
be shared by RE developers and transmission companies. The exgewteation revenue

will be used to fund the RE and transmission projects.
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In this dissertation, the interconnection of a RE project is accsineol by a
Merchant Transmission (MT) project and is coordinated betweds Gdheration Company
(RE-GenCo) and a Transmission Company (TransCo). Furthermoregdbeery of their
investments is a result of a negotiation between the two entities usiegpibeted generation
profit based on the market and generation performance. Hence GeiREe waiting to be
connected to the power grid can actively seek out a TransCo wheressietd in investing in
new transmission lines if the compensation from the RE-GenCoffisiently attractive.
Negotiation then can proceed considering the uncertainties asdagitit@utputs renewable
resources and electricity prices. An agreement is reactsadisfactory returns are achieved
for both companies.

The prerequisite for a successful settlement from the nagatibetween a RE-
GenCo and a TransCo is the sufficient profit margins for both paHiewever, it is possible
that the expected generation revenue may not be adequate to covemdhnatign and
transmission investments plus the profit margin. Under this situaimcentive may be
required to assure the accomplishment of these investments. Hovfearrjncentive is
needed, policy makers will have to deal with the questions, “What dodéetives look like
and what would be their optimal values?” Schumaehait. [4] report that incentive could be
policy initiatives to promote transmission development. FERC alss gedicies [5] for MT
developers to hold auction to attract and pre-subscribe some capdeihchor customers.”
Incentive can be monetary incentives such as Renewable Enertific@tes (RECs) that
need to be purchased by LSEs to meet the RPS [6], or energy ssilssiclieas Investment
Tax Credits (ITCs) and Production Tax Credits (PTCs). Usiogatary incentives, RE-

GenCos could gain an additional revenue stream that facilitates the tiegqtracess.
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1.2 Literature Review

1.2.1 Short-Term Transmission Congestion Forecastin g

Many studies have focused on electricity price forecastingh Witly publicly
available information in hand, most applicable price forecastings tacé restricted to
statistical methods [1], [7]-[17]. For example, statisticatmods are deployed to forecast the
hourly Ontario energy price on a basis of publicly available electneasket information [7].
Nogales’ research in [8] is a pioneering work in the applicationnoé $eries models in
electricity price forecasting. ARIMA [9] and GARCH [10] aakso used to predict electricity
price. Meanwhile, another branch in statistical forecastingbesn developed based on
intelligent system techniques, among which neural network approachegdely used in
load forecasting and extended to price forecasting as well. Spahiden [11] primarily
focuses on the application of Artificial Neural Network (ANN)load and price forecasting.
Other neural network approaches [12]-[15] are also investigateelactricity price
forecasting. Structural models considering wholesale power miamk@imentals have also
been attempted [19]-[20].

However, few studies have focused on congestion forecasting. Liafdljes a
statistical model to predict line shadow prices. EPRI [22] hasloeed a congestion
forecasting model that uses sequential Monte Carlo simulatiodoige a probabilistic load
flow. The EPRI model provides congestion probabilities for transomidsies of interests,
but it requires intensive data input to the load flow model.

Li and Bo [23]-[24] examine LMP variation in response to load tianaand they

predict the next binding constraint when load is increased. Howéeeauthors also assume
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that a particular system growth pattern exists and that loadlgaiveach bus is proportional
to this pattern. Most U.S. wholesale power markets operating uiierace geographically
large; hence, distributed loads do not necessarily exhibit proportionathg Moreover, the

authors’ approach has not been applied in large-scale power syshemes practical issues
of limited data availability need to be considered.

In our study [25], a piecewise linear-affine mapping betweenildiséd loads and
DC-OPF system variable solutions was identified and applied sxdst congestion and
LMPs under the maintained assumption that complete historfcaimation was available
regarding the marginality (or not) of generating units and the estinge(or not) of
transmission lines. This method is able to give an exact predietsuit since it is derived
from the core structure of a wholesale power market. However, wipied to the actual
forecasting of large-scale wholesale power systems, dataeewuits become a problem.
The needed historical generation capacity data and line floa ae either publicly
unavailable on market operator websites or only available with si@tag. Consequently,
the correct pattern of binding constraints corresponding to any pofdilte load point is
difficult to effectively identify, which in turn prevents the acaar forecasting of system

variables.

1.2.2 Transmission Investment for Integrating Renew  able Energy

The transmission expansion planning problem has been addressed by a oumbe
researchers from technical point of view. Gare¢sl proposed a bilevel approach for
transmission planners to minimize network cost while faciitatenergy trading [26]. A

multi-objective framework is developed to handle different stakelslldgerests [27], and
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transmission planning models proposed in [28] and [29] take into account riendle
uncertainty. Transmission expansion methodologies regarding the aintgeftom large-

scale wind farms are presented in [30] and [31]. Sauma and Orepr{3&je an evaluation
method for different transmission investments based on equilibrium shodéh the

consideration of interactive generation firms.

These studies focus on solving optimal transmission investmensiateciin
centralized approaches which are usually undertaken by centransthission planners or
regulatory bodies. The centralized planning is associated wiHR& Fapproved rate method
for the transmission developers, typically the traditional w@ditito recover their costs of
investment. A number of rate methods have been examined in théutger@ypically, a
postage stamp rate is adopted to recover the fixed transmxsof33]. Different usage-
based methods are also suggested and evaluated bst.Rd)33]. The potential fairness
issue in usage-based methods is attempted to resolve using rfaimass criteria [34]. In
addition to the rate structure, Galiagtzal proposed a cost allocation methodology based on
the principle of equivalent bilateral exchanges. The allocatedresgonsibilities are then
used to set the rates for different LSEs. Finally, differefdcation and rate setting
approaches are presented in [35]-[39].

Independent from the centralized planning performed by RTOs sikIMysresearch
effort has been dedicated to explore market-based transmissmmnglanodels which can
be considered as decentralized approaches for transmission invedRuobrmt al. [40]
proposed a coordinated transmission and generation planning model whiglorates the
characteristics from the centralized and decentralized mod&ld. acts as a coordinator

rather than a decision maker by providing capacity signals t&emnaarticipants who
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independently decide the investment plans. Research has been abnolucteerchant
transmission projects, a market-based transmission investment ¢artleat US electricity
markets. Joskow and Tirole [41] examined performance attributesiassl with merchant
transmission models with the consideration of several realititbudes of electricity
markets and transmission networks. Salatai. [42] identified the most opportunistic time
to start a merchant transmission project from an investor powieof. In their continued
work [43], they proposed a market-based rate design for recoverimpanétransmission
investment costs from policy makers’ point of view.

The transmission investment model in this dissertation differs tin@nprevious work
in that the investment of a market-based transmission projeetasered via a negotiated
transmission rate from a RE-GenCo to a TransCo. Negotiaésults are derived and
provide guidance for market participants in an actual negotiatioreggoédditionally, the
model can be used to develop renewable energy subsidies for palkeys to design market

incentives for promoting transmission investment and use of renewable ezsgices.

1.3 Contributions of this Dissertation

Transmission is a critical component in power systems. Economilysenaf
transmission system is an important task to support the decisikimgnia short-term
operation and planning. This dissertation is focused on the developménaingmission
congestion forecasting tool and transmission investment model &grating renewable
energy. The original contributions are summarized as follows:

1. A congestion forecasting tool based on convex hull techniques
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The proposed forecasting algorithm is a novel use of convex hull techibigeeable
the short-term forecasting of congestion conditions, prices, and Stsem variables. The
convex hull algorithm and probabilistic inclusion test effectivelgdmt congestion patterns
at various operating points. Compared with state-of-the-art stali¢twecasting models, this
new method significantly reduces the forecasting data requitebyeusing only publicly
available data but still achieves a high level of accuracy.

2. A novel concept of system patterns to enhance the forecasting accuracy

The forecasting algorithm proposes the new concept of system pattamsfésctive
way to take generation and transmission capacity constraitttsaccount. This concept
captures the core structure of wholesale power markets ané penmits more accurate
forecasting results. The new method exploiting the systenerpationcept outperforms
traditional statistical forecasting models for large-scale powéersgs

3. A negotiation methodology for renewable energy transmission investmedtdras
Nash Bargaining theory

The proposed transmission investment model based on Nash Bargaining approach
provides a decentralized methodology for integrating renewableg\yen€he negotiation
methodology takes into account electricity market uncertaintiethendtermittent nature of
renewable energy. The negotiated results provide guidelinesrfewable energy generation
and transmission companies in sharing and recovering integration and investshent ¢

4. A new approach to evaluate renewable energy subsidy policy

The comparison between negotiation and centralized planning addiessesue of
optimal subsidy policy to produce sufficient incentives for renesvabergy investment. The

optimal subsidy policy can steer the negotiated solution to aatieatl solution that
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maximizes the social surplus. The results provide important guidangmlicy makers to

establish proper renewable energy subsidies.

1.4 Thesis Organization

This research conducts an economic analysis for transmissionioperad planning.
Specifically for short-term transmission operation, it is intertdgagrovide a congestion and
price forecasting tool by analyzing the fundamentals of poweketgar For long-term
transmission planning, a systematic negotiation methodology amorkgtnparticipants is
provided for renewable energy investment incorporating the stocimastice of renewable
resources. The comparison between the negotiation model and cemipédizering model is
a resource for decision support in policy making of renewable energy subsidies

Chapter 2 presents a congestion forecasting tool based on the sefddtE A new
short-run congestion forecasting algorithm is proposed based on the cohcggtem
patterns—combinations of status flags for transmission lines and gegenmatis. It is shown
that the load space can be divided into convex sets within which systgables can be
expressed as linear-affine functions of loads. Congestion foiregasthen transformed into
the problem of identifying the correct system pattern. A corudkalgorithm is developed
to estimate the convex sets in the load space. A point inclusiors teséd to identify the
possible system patterns and congestion conditions for a future iogepaint and a
corresponding “sensitivity matrix” is used to forecast LMPs &nd shadow prices.
Forecasting results based on a NYISO case study demoriktaitbe proposed forecasting

procedure is highly efficient.
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Chapter 3 outlines the research on transmission investment toatetegnewable
energy. The negotiation process is analyzed for renewable en&gyonnection between a
RE-GenCo and a TransCo. Nash Bargaining theory is adoptedetondet the transmission
investment plans and RE-GenCo’s transmission payment. The negotratbndology as
well as its results provides an alternative means to trasgmi planning for integrating
renewable energy. By modifying the included subsidies, the proposedatiegotipproach
produces results (i.e. transmission plan and rate) mirroring thaseaf centralized planning
model in which the objective is to maximize the overall socighlss. The renewable energy
subsidies can be used as an adjusting parameter to steer gimanteplan derived from the
negotiation towards an optimal plan. This result and comparison provmtetant guidance
to policy makers for determining appropriate renewable energy subsidies.

Chapter 4 provides conclusions and discusses the future research directions.
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CHAPTER 2. SHORT-TERM TRANSMISSION CONGESTION

FORECASTING

2.1 Introduction

In this chapter, a new algorithm is developed for the short-teredsting of system
variables in wholesale power systems with substantially redda&l requirements. This
algorithm permits the derivation of estimated probabilityritigtions for congestion, LMPs,
and other DC-OPF system variable solutions in real-time nsadad in forward markets
with hour-ahead, day-ahead and week-ahead time horizons, conditional avera g
commitment-and-line scenario that specifies a set of gemgnaits committed for possible
dispatch and a set of transmission lines capable of supporting poweriMbreover, given
suitable availability of historical data, this scenario-conditicioeelcasting algorithm can be
generalized to a cross-scenario forecasting algorithm bygskignment of probabilities to
different commitment-and-line scenarios.

This new forecasting algorithm makes use of two supporting techniquaslier to
substantially reduce the amount of required data relative to [21g].fifst technique is a
method developed by Bemporad et al. [45] and Tgndel et al. [46] for divitkngarameter
space of a Quadratic-Linear Programming (QLP) problem iotovex subsets such that,
within each convex subset, the optimal solution values can be exprEsdettar-affine
functions of the parameters. A similar technique is applied insthidy to a QLP DC-OPF
problem formulation to show that, conditional on any given commitmenthia@dcenario,

the load space can be divided into convex subsets within which the opi@r@PF system

www.manaraa.com



13

variable solutions are linear-affine functions of load. Each conubge$ corresponds to a
unique system pattern, that is, a unique array of flags reflecting a parpediern of binding
minimum or maximum capacity constraints for the committed rgeing units and available
transmission lines specified by the commitment-and-line scenario.

The second technique concerns convex hull determination. Given aegtioollof
points, computational geometry [47] provides algorithms to compute thespornding
convex hull, i.e., the smallest convex set containing these points. Canllealgorithms
have been gaining popularity in the areas of computer graphics, anbggographic
information systems and so forth. To date, however, they have not beeu ap@lectricity
market forecasting. A convex hull algorithm is used in this stodgstimate the convex
subsets of load space within which DC-OPF solutions are linBae-dfinctions of load
when incomplete historical data prevent their exact determination.

More precisely, the proposed forecasting algorithm geneshtetterm forecasts for
congestion, LMPs, and other power system variables as followd. tehote a vector of
loads at some possible future operating point corresponding tdieul@rcommitment-and-
line scenarids. A convex hull method is first used to estimate the division af &gmce into
convex subsets (system pattern regions), each corresponding tainat disstorically-
observed system pattern of binding capacity constraints for thecypart committed
generating units and available transmission lines specifiedr #dé\ probabilistic point
inclusion test is next used to calculate the probabilitylthatassociated with each historical
system pattern, taking into account the imprecision with whiclsyem pattern regions in
load space are estimated. The congestion conditidnsr& then probabilistically forecasted

using the probability-weighted historical system patterns, andastedor LMPs and other
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system variables dt are calculated using the linear-affine mapping between load@&nd
OPF system variable solutions that corresponds to each probabilgiytece historical

system pattern.

2.2 Basic Forecasting Problem Formulation

In electricity markets, congestion occurs when the available edoalogiectricity
has to be delivered to load “out-of-merit-order” due to transamisBmitations. That is,
higher-cost generation needs to be dispatched in place of cheaper generatienttosnioad
in order to avoid overload of transmission lines. In this case, i levels at different
nodes separate from each other and from the unconstrained maeketgprice. Therefore,
congestion is a critical factor determining the formation of LMP levels.

However, congestion patterns are difficult to anticipate since dheyelated to the
network topology of power systems. Provided perfect information idabley such as
network data, load data, and generator bidding data, a market cleaoue could be
utilized to obtain accurate forecasts of congestion conditionpaces. Nevertheless, two
issues arise for this direct forecasting method. First, modtenttaders do not have direct
access to the information that is needed to implement this metheg;would have to
depend on data published by market operators. Second, the market operatmslvdse
would need a high degree of computational speed to carry out the required computations.

As a result, statistical tools have been developed that tackle tWwesforecasting
issues by modeling the statistical correlation betweengace explanatory factors. These
statistical tools lack explicit consideration for congestion, paoigause no effective

approach has been developed to enable these tools to capture and &epeftscts of
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congestion. Ignoring the effects of congestion makes the forecasted |ass reliable and
difficult to interpret at operating points with abnormal price behaviors.

Surely it is possible to glean some useful information about futursibb®s
congestion conditions based on statistically forecasted LMPs. Howéwese intuitive
insights, based on forecasters’ experiences, cannot provide ret@jestion forecasts.
From a cause-and-effect point of view, congestion is the cahiée MMP is the effect. One
cannot infer the cause (congestion) from the effect (LMP) diMfe is not solely driven by
congestion. In particular, statistical LMP forecasting tools do ake tnto account the
structural aspects of power markets that fundamentally drivelétermination of LMPs:
namely, the fact that LMPs are derived as solutions to oppoveer flow problems subject
to generation capacity and transmission line constraints.

As explained more carefully in Section 2.3.1, the novel concept ofstefaypattern”
is used in this study to incorporate the structural generation tapad transmission line
aspects that drive congestion outcomes. The forecasting of dongasta possible future
operating point is thus transformed into a problem of estimatingaiiiect system pattern at
this operating point. Moreover, the forecasting of prices and othemsy&riables at this
operating point can subsequently be undertaken using the particukardifine mapping
between load and DC-OPF system variable solutions that iexiates] with this system
pattern.

This basic forecasting approach makes three simplifying asgumaptirst, it is
assumed that the forecasting of system variables at possibie bpgerating points can be
conditioned on a particular commitment-and-line scenario, that p@rtecular generation

commitment (designation of generating units available for dispated a particular network
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topology (designation of available transmission lines). Secondagsismed that a lossless
DC-OPF problem formulation is used for the determination of LMPs athdr system
variables, implying in particular that the loss components of LefBseglected. Third, it is
assumed that generator supply-offer behaviors are relativelie statthe forecasting

horizons.

2.3 Basic Forecasting Algorithm Description

2.3.1 System Patterns and System Pattern Regions

At any system operating point, the number of marginal gengratiits and binding
transmission constraints tends to be small compared to the number of trademission
lines, and generating units. For example, in the Midwest Indeperiestem Operator
(MISO) region with 36,845 network buses and 5,575 generating units, the nundegy- of
ahead binding constraints is published daily and is typically observesl less than 20 for
an hourly interval [48]. On the other hand, high-cost units such andaslainits are more
likely to become marginal units during peak hours, the number of which is modest.

Exploiting this important characteristic of power markets, dea iof asystem pattern
is introduced consisting of a vector of flags indicating the margteius of committed
generating units and the congestion status of available transmiisg&s at any given system
operating point; see Table 1. As long as the number of marginalagjegeunits (labeled 0)
and the number of congested transmission lines (labeled -1 orrE)atieely few in number,
the number of possible system patterns can be easily handled.

As noted in Section 2.2, the basic congestion forecasting problem aanbé¢he

transformed into a problem of estimating the correct systerarpdtir any given possible
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future operating point. The congestion forecast is directly obtaineel the system pattern is
estimated, since the status of transmission lines is part aytem pattern. Moreover, as
clarified below in Section 2.3.4, short-term forecasts for prioelsogher system variables at

the operating point can also be obtained making use of this estimated system patte

Table 1. Flags used for system patterns

Generating units Transmission lines
State Minimum Marginal Maximum  Negative No Positive
Capacity Unit Capacity Congestion Congestion Congestion
Flag -1 0 1 -1 0 1

The proposition below provides the theoretical foundation for our proposed
forecasting approach. The proposition uses the conceptcoin@ex polytopdor an n-
dimensional Euclidean spaf¥, i.e., a region iR" determined as the intersection of finitely
many half-spaces iR".

Proposition 1 Suppose a standard DC-OPF formulation with fixed loads and

guadratic generator cost functions is used by a market operator to detesystem variable
solutions. Then, conditional on any given commitment-and-line scenario S, thepémad s
can be covered by convex polytopes such that: (i) the interior of e@olex polytope
corresponds to a unique system pattern; and (ii) within the interioact eonvex polytope
the system variable solutions can be expressed as linear-affineohsadi the vector of
distributed loads.
The proof of Proposition 1, originally derived in [44], is outlined in ppeadix to

this dissertation. The proof starts with the derivation of inequalid equality constraints

constructed from the first-order KKT conditions for a DC-OPF probtemditional on a
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particular commitment-and-line scenao The inequality constraints characterize convex
polytopes that cover the load space, where the interior of each cony&ppotorresponds

to a unique system patterfhe convex polytopes constituting the covering of the load space
are referred to aSystem Pattern Regions (SPR=8)the fact that the interior of each convex
polytope is associated with a unique system pattern.

Within each SPR the equality constraints take the form of hat#e equations with
constant coefficients that describe fixed linear-affine @hstips between DC-OPF system
variable solutions and the vector of loads. The matrix of coeffifEmtthese linear-affine
functions gives the rates of change with regard to real-powertclisfevels for generating
units and shadow prices for bus balance and line constraints when legustarbed within
the region. This matrix is referred to below asghesitivity matriXor this SPR.

Figure 1 provides illustrative depictions of two SPRsandR,, together with their
associated linear-affine mappings, when the load space is congidseddimensional load
vectorsL = (L, Ly). The symboP denotes the vector of unit dispatch levels, and the symbol

A denotes the vector of dual variables. The mappings are chaedtéry sensitivity

matrices Ki, Kz) and ordinate vectorsk(’,K;) that are constant within each SPR, which

implies that the DC-OPF solutions fé& and A can be expressed as fixed linear-affine

functions of the load vectdr within each SPR.
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L, A

Figure 1. lllustration of two system pattern regions (SPRs) in load space

2.3.2 Convex Hull Estimation of Historical SPRs

In practice, deriving the exact form of the SPRs is difficlule to limited access to
most of the required information. This required information includes supiidy data,
generating unit capacity data, and transmission limit data.

This lack of information can be overcome by applying a “convexdigbrithm” to
historical load data to estimate SPRs. Thrvex hullof a point seB is the smallest convex
set that contains all the points®f49]. A convex hull algorithms a computational method
for computing the convex hull of a &t

Each historical load point corresponding to a particular commitnrehtiae
scenario S can in principle be associated with a distinct system patbased on
corresponding historical data regarding the marginal statile @fommitted generating units
and the congested status of the available transmission lines. Ttwicais SPR

corresponding to each such historically identified system pattamnthen be estimated by
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deriving the convex hull of the collection of all historical load poitihat have been
associated with this system pattern.

This study makes use of the “QuickHull algorithm” to estimhistorical SPRs
conditional on a given commitment-and-line scen&ridhe QuickHull algorithm, developed
by Barberet al. [50], is an iterative procedure for determining all of the patotsstituting
the convex hull of a finite s@. At each step, points iB that are internal to the convex hull
of B, and hence not viable as vertices of the convex hull, are i@ehéfid eliminated from
further consideration. This process continues until no more such points can be found.

An illustrative application of the QuickHull algorithm for a finidanar seB is
presented in Figure 2. The $is first partitioned into two subsell andB2 by a linelr
connecting a left-most upper pointo a right-most lower point, as depicted in in Figure
2(a). More precisely, the points B with the smallest x value are first selected and, from
among these points, a point with a largest y value is chosenthe lbeft-most upper poirht
similarly for the right-most lower point For each subs@&1 andB2, a pointz in B that is
furthest fromlr is determined and two additional lines are construgieftipm | to z and
zr from z to r; see Figure 2(b). By construction, points Bfthat lie strictly inside the
resulting triangldzr are strictly interior to the convex hull Bfand hence can be eliminated
from further consideration. Thmoints on the triangle itself are possible vertex points for the

boundary of the convex hull &
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Figure 2. lllustration of the QuickHull algorithm

To continue the recursion, the above procedure is repeated for thedreslinset
BRedof B resulting from this elimination. Specifically, two subsets asgbeiated triangles
are formed as before f@Redand the points oBRedlying within the interiors of the
resulting triangles are eliminated. If a triangle everedegates to a line, then all the points
along the line lie on the boundary of the convex hulBdfy construction. For example, in
Figure 2(c) the endpointsandm of the linerm both lie on the boundary of the convex hull
of B.

This process of elimination continues until no additional points toilmnelted can
be found. Sinceé is finite, the process is guaranteed to stop in finitely nseys. All the
convex hull points foB (boundary and interior) can be determined recursively in this manner.
The complete convex hull fd@ is depicted in Figure 2(d). By construction, this convex hull
is a planar convex polytope.

The main advantage of the QuickHull algorithm relative to othen silgorithms is

its ability to efficiently handle high-dimensional seB by reducing computational
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requirements [51]. The QuickHull algorithm has been widely usedieémtgec applications

and appears to be the algorithm of choice for higher-dimensional canllecomputing [52].

2.3.3 Basic Point Inclusion Test

Suppose the load space has been divided up into estimated SPRs whimss inte
correspond to distinct system patterns, conditional on a given commiameiiine scenario
S Consider, now, the task of forecasting congestion conditions at some future operating point
a short time into the future for which scenaiagain obtains. The essence of this forecasting
problem is the detection of the correct SPR for this future opgrpuint. If the correct SPR
can be detected, then congested conditions can be inferred direatlyhfe corresponding
system pattern.

This detection is undertaken in this study by means of a “point ionldest” The
basic point inclusion teatsed in this study is illustrated in Figure 3 for an SPR ioad |
plane. Recall that each SPR takes the form of a convex polytape, riegion expressable as
the intersection of half-spaces; hence each SPR has flat fatte straight edges. Let the
normal vectors pointing towards the interior of the SPR be condrimteeach edge of the

SPR. Now consider the depicted poiit and letap denote the vector directed from the
vertex ato the pointP;. The dot product betweefp and each normal vector of each

neighboring edge dd is greater than or equal to O. If this is true for all wesdiof the SPR,
the pointP; is judged to be on or inside the SPR. On the other hand, one ctratdegeis

outside the SPR since the dot product®fand the normal vector for the neighboring edge

connectinga to b is negative.
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P2

o L,

Figure 3. lllustration of the basic point inclusion test for an SPR in a loaglane

As will be seen in Section 2.4, practical data-availabiléyés prevent the use of the
basic point inclusion test for the exact determination of the Sifaiaing any possible
future load pointL. However, given a suitable probabilistic extension of this basiat poi

inclusion test, the probability that any particular SPR contacen be estimated.

2.3.4 Linear-Affine Mapping Procedure

Given sufficient generation and transmission information, each lugkddad point
can be associated with an SPR according to the status of tlerageg units and
transmission lines at the historical operating time. More geéci given any commitment-
and-line scenari®, consider the collection of all historically observed load points mibti
underS. Let this collection of historical load points be partitioned intsstgcorresponding
to distinct system patterns for scendsio For each load subset, use the QuickHull algorithm
to calculate its convex hull in load space. Each of these convextheh constitutes a
distinct estimated SPR for scenaBoln principal, any future load point corresponding to

scenarioS can then be associated with one of these estimated SPRs by ofighe basic
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point inclusion test. This association permits the prediction of cangesgtices, and other

DC-OPF system variable solutions at this load point.

To see this more clearly, I8t"and L denote matrices consisting of all historically

observed DC-OPF system solution vectors and load vectors correspomdingatticular
system pattern for a particular commitment-and-line scenaBiolLet the SPR in load space

corresponding to this system pattern, denotedRppe estimated by the convex hgl; of
the collection of all of the historically observed load vectors includ&d.in
By Proposition 1, the mapping betwe¥hand L' can be expressed in the linear-
affine form
Y"=K L'+ K’ (1)
whereK; denotes the sensitivity matrix correspondindgrto Normally there will be

multiple historical operating points corresponding to any one SPRdea commitment-

and-line scenari®. In this case Ordinary Least Squares (OLS) can be appli€b) to

obtain estimateX, and K °for K, andK?, as follows:

(k)T T A,T T
L= (XTX) XY (2)
& J-ex)
wherex =[(L))" 1].

Now let L' denote a possible load vector for a future operating time that has been

found to belong to thestimatedSPRRg;, as determined from a basic point inclusion test

applied to the collection of all historically estimated SPRsesponding to scenarl® Then

the forecasted vector’ of DC-OPF system variable solutions correspondinly can be

calculated as
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Yif = Ki |-|f + Kio (3)
The above linear-affine mapping procedure is modified in Secfioh to

accommodate some practical issues arising from data incompleteness.

2.4 Extension to Probabilistic Forecasting

Practical data availability issues arise for the im@etation of the basic scenario-
conditioned forecasting algorithm outlined in Section 2.3. This secismugbes how these
issues can be addressed by means of a probabilistic extensitis dfasic algorithm.
Throughout this discussion the analysis is assumed to be conditioned owera gi

commitment-and-line scenar®

2.4.1 Practical Data Availability Issues

The basic scenario-conditioned forecasting algorithm proposed itiorse2.3
assumes that historical data are available regarding bindingraiotsstfor all generating
units and for transmission lines on an hourly basis. In actuality, lesye marginal status
of generating units is either confidential or published with thtions. Moreover, the
theoretical load space cannot be fully reflected by the hourtgrital load data which
represent several realizations and subsets of the complete load space.

Due to these data limitations, in practice the Aetindexing hourly binding
constraints cannot be completely determined. Consequently, estobtdesed for the SPRs
could be biased. The two basic ways in which this bias could aesbBustrated in Figure 4
for a simple two-dimensional load space. Suppose the SPR corresponidiaedrte binding

constraint seA is given byRa (area 1) in Figure 4.
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This true SPRRa can in principle be determined by applying the basic point inclusion
test to every possible future operating point. Suppose, however, thaathieglly estimated
binding constraint se&g; is incomplete; for example, suppo&g only reflects the status of
the most frequently congested lines. Given complete historicdl diada, the estimated
convex hullRg; (area 3) would then have to be larger than theRa(area 1) becaus&:; is
smaller (less restrictive) than the tAe In fact, however, the actual estimated convex hull
must be based on available historical load data. Since the fataifyi a subset of the full
load space, the result will be an actual estimated conveXRhgdrea 2jhat lies withinRg;
(area 3). In short, incompleteness/fand incompleteness of the practical load space each

separately introduce bias in the estimateRgrbut in opposing directions.

Re

R

R,

-
-
1

L

Figure 4. Convex hull estimates for SPRs can be biased

What are the practical implications of this bias for our bésiecasting algorithm?
Two possible cases need to be handled, as illustrated in Figure 5.

Case A:Pointr in Figure 5 lies in the interior of two different estimatedRS
namely,Re; andRe; corresponding to two distinct system patteda&ndA,. The true SPRs

corresponding t@y; andA; are denoted by the shaded regiBasandRa,, respectively. The
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fact that the interiors of the true SPRs do not overlap follows faoposition 1. However,
as explained above, overlap can occur for the interiors of estimatedd8@Rsbias.
Case B:Pointt in Figure 5 is actually in the true SFR,. However, point cannot
be assigned to either of the estimated SP&=use the bias in these estimates has caused

pointt to lie outside of both of them.

L, A

Figure 5. Two possible types of forecast error due to biased SPR estimates

2.4.2 Probabilistic Point Inclusion Test

To mitigate the issues arising from the two types of biasudsed in Section 2.4.1,
mean and interval forecasting can be performed for the DC-@8Ens variable solutions
corresponding to any forecasted future load pbinfrhis probabilistic forecasting can be
implemented by estimating the probability of each SPR conditiondl’,owhich can be
characterized asm@obabilistic point inclusion test

More precisely, let" denote the forecasted load at a future operating fioémid let
R denote any particular SPR Let the collection of all historically identified SPRs be

denoted byR", and letCR denote the cardinality 6. Suppose the probability of occurrence
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for any SPR not iiR" is zero. Then the probability thBthas occurred, given that has been

observed, can be expressed as:

. P(L|R)AR)
PRIV =S R PAR)

ieR"

(4)

In practice, the various terms in (4) have to be estimated. Irstindy it will be

assumed that the prior probabiliB(R) is an empirical prior estimated by the historical

frequency ofR: namely, the number of times in the past fRabas been observed to occur

divided by the total number of all past SPR observations.
The termP(L" |R) in (4) represents the probability of observing the load pdint

given that the true SPR . Intuitively, this probability should be a decreasing function of
the distance betweeh’ and R. Therefore, this probability is estimated in this study as

follows:

(1-D /TD)
> (1-D, /TDYy

jeR"

In (5) the termD; denotes the (Euclidean) distance betwideandR;, andTD denotes

P(L"|R) = (5)

the total distance calculated as the sum of the distances bdtha®d each SPR iR". The

normalization parameter in (5) can be adjusted to obtain an appropriate conditional

probability measure, possibly by using historical data as m@icases. A specification

y=0results in a uniform conditional probability (5) faf: namely, 1 divided by the

cardinality CR of R". In this case (5) is independent of the distance meadDies

Alternatively, a specificatiory =1limplies the conditional probability (5) is derived from a

linear normalization, whiler = 2corresponds to a quadratic normalization. As will be shown
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below, the quadratic normalization form of the conditional probabilityréSults in good
forecasts for our NYISO case study.
Mean forecasts for the DC-OPF system variable solutions at the operatbhfvadh

forecasted load poirit’ can then be obtained using the estimated form for the conditional
probability assessments (4), denotedmdyor short. LetY," denote the forecasted DC-OPF
system variable solution vector corresponding to any historicR BFn R". The mean

forecastY ' can then be calculated as

Yi=2 RY ©)
ieR"

A forecaster might also be interested in calculating upper aner Ibaunds for the
DC-OPF system variable solutions calculated with respect totst likely SPRs. Leamp
denote the forecaster’s desired cut-off number of most probaBle, 3iRd leMP represent
the subset oR” that contains thesempmost probable SPRs. Then the upper bduBbtand
lower boundLB' for each forecasted DC-OPF system variable solution can benited
over the set of SPRs MP. As a measure of dispersion, the forecaster can further consider
the coverage probability CPdefined to be the summation of the probability assessments (4)
for thenmpmost probable SPRs.

Finally, another alternative might be for the forecaster toidensnean forecasts
calculated using themp most probable SPRs, i.e. the subsi® of R". For example, a
forecaster could choosemp=1, which would result in a point forecast for the DC-OPF

system variable solutions based on a single most likely BRRR" as determined from the

estimated form of the conditional probability assessments (4).
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2.4.3 Probabilistic Forecasting Algorithm

Taking into account the practical data issues addressed in Settdrend 2.4.2, our
proposed probabilistic forecasting algorithm proceeds in four steps, as follows

Step 1:Perform historical data processing to identify historicalesyspatterns. Use
the QuickHull algorithm to estimate historical SPRs as convds btihistorically observed
load points corresponding to distinct historical system patterns.

Step 2:For each historical SPR estimated in Step 1, a linear-affaqging between
load vectors and DC-OPF system variable solution vectors is dersieg historical load
and system variable data. The system variable solution vecttuden®al-power dispatch
levels and dual variables for nodal balance and transmissiorcdimgraints. The linear-
affine mapping is characterized by a sensitivity matrix and an ordinctier ve

Step 3: For any possible load poif in the near future for which system variable
forecasts are desired, a probabilistic point inclusion test i®rpeetl. More precisely, the
estimated form of the conditional probability distribution (4) is usedestimate the
probability thatL lies in each of the historical SPRs identified in Step 1.

Step 4: The results from Steps 1-3 are used to generate probabdigttasts at the
future possible operating point’ for generation capacity and transmission congestion
conditions (system patterns) as well as for DC-OPF systembl@ solutions for dispatch
levels and dual variables (including LMPBEpr example, these probabilistic forecasts could
take the form of mean and interval forecasts, or they could befpmasts based on a most

probable SPR.
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2.5 Five-Bus System: Basic Forecasting

The input data file for the 5-bus test case included in the downlo#te AMES
Wholesale Power Market Test Bed [53] is used below to illigstlmsic forecasting
algorithm outlined in Section 2.3. As depicted in Figure 6, this 5-buscts® has six
transmission lines (TL1-TL6), five generation units (G1-G5), &melet load-serving entities
(LSE 1-LSE 3).

The AMES test bed implements a wholesale power market operatiag a
transmission network with congestion managed by LMP [54]. Pseéking generation units
in AMES are able to learn over time how to report their supplyofi@sed on their past
profit outcomes. In this study, however, it is assumed that each generatiorpori its true
cost and capacity attributes to the ISO each day for the day-ahead eaékgiy m

The load data for our 5-bus case study are scaled-down timegdogds derived
from load data available at the MISO website [55]. Usingltad data, AMES was run for
365 simulated days in order to determine historical system pa#iefie sensitivity matrix
and ordinate vector for each of these patterns was then calculaystem pattern
determination and system variable prediction were carried out for vaassggle distributed

load patterns. These steps are explained more carefully in the followisgctohs.
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Figure 6. 5-bus network

2.5.1 Historical System Patterns and the Correspond  ing Sensitivity
Matrices

Nine system patterns were identified from the AMES output obt&nhoead the 365
simulated days using a year of scaled-down MISO load data.fotliemost frequently

observed system patterns are displayed in Table 2.

Table 2. The four most frequent historical system patterns for the Bus system

Pattern G1 G2 G3 G4 G5 TL1 TL2 TL3 TL4 TL5 TL6
S1 1 0 -1 -1 0 0 0 0 0 0 0

S2 0 0 0 -1 0 1 0 0 0 0 0
S3 1 0 0 -1 0 1 0 0 0 0 0
S4 1 0 -1 -1 0 1 0 0 0 0 0

The sensitivity matrix and ordinate vector for each of the ninerigat system
patterns were then estimated making use of actual systaatiogeoints observed for each
historical system pattern. To illustrate, we compute the satsihatrix and ordinate vector

for the dispatch level of generation unit G1 in system patterrSpdcifically, using four
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historically observed operating poirtts- 1,...,4 associated with system pattern S4, a set of

four linear equations was determined as follows:

P =374+ 30 L+ I L+ OF (7)
R? =374+ 35 5+ I, B+ O (8)
RP=34L+ 37 5+ 35 B+ O 9)
R*=J7 4L+ 35 L+ I U+ O (10)

Here B' denotes the dispatch level of G1 at operating point thi\ndienotes the load

level of LSE] at operating point. These four equations determine solution values for the
four unknown variablesl}*, 37", 37'andO™. The superscript “P4” represents the dispatch
level P in system pattern S4. The subscript “11” denotes the dispatch level of G1 pehtres
to load level of LSE 1. The first three solution values determineroweof the block
matrixJ"*, hence also one row of the sensitivity matdik for system pattern S4. The last
solution value determines one element5f, hence one element of the ordinate ve@dr

for system pattern S4. Other rows and elements can be synutariputed. The sensitivity

matrix and ordinate vector for S4 are partially shown in Table 3.

2.5.2 Predicting System Pattern, Congestion and Sys  tem Variables

Now suppose that a certain distributed load pattern is forecastéuefoear future.
For example, suppose the forecasted loads for buses 1 through 3 iowdgodrour H are L1
= 245.50MW, L2 = 211.64MW, and L3 = 170.17MW. An iterative assume-check procedure
can then be undertaken to determine which system pattern correspdhdsetdorecasted
load conditions. Since complete information is available for predictiencorrect system

pattern can be found precisely. In this five bus case, the coystetrspattern is found to be
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LMP and congestion predictions generated for these foredaatsl under system

pattern S3 are reported in Table 4, along with the actual LMP<@mgkstion resulting

under this load condition.

Table 3. Sensitivity matrix and ordinate vector for system pattern S4 (parélly shown)

OLMP JLMP
23.83 | [-0.02 -0.03 0.0
—-3400.00 8.74 7.12 23
—2729.20 702 572 18
-994.43 259 209 0.7
| —52.79 | -0.17 0.15 0.0
o” F
[ 110 | [0 0 0 |
6679.66 -17.21 —13.89 — 4.2%
0 0 0 0
0 0 0 0
| -6679.30 | 17.92 1468 5.14
o" J
[ 250.00 ) 0 0
601.57 -143 -1.05 -0.0
5938.09 -15.78 -12.87 — 4.2
250.00 -1.0 0 0
208.97 -0.89 -0.92 0.03
| 741.26 | 214 -1.84 -0.9
Table 4. LMP and line congestion predictions under S3
LMPS LMP1 LMP2 LMP3 LMP4 LMP5
Predicted 15.14 29.50 26.79 19.29 15.84
Actual 15.12 29.49 26.77 19.28 15.86
Congested lines Predicted: TL1 Actual: TL1

www.manaraa.com



35

The proposed approach is also tested for the prediction of LMPs arftblrseover
successive hours. Figure 7 and Figure 8 display the predicted aabhvatties for the power
flow on line TL1 and the LMP at bus 2 for all 24 hours of the siredlalay 363. As seen,
the predicted values are nearly coincident with the actual vadliésring only by small

computational round-off and truncation errors.

180
0

Time (Hour)

Figure 7. Predicted hourly power flow on line TL1 during day 363

e Predicted
. Actual

30

281
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22F
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Figure 8. Predicted LMP at bus 2 during day 363
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2.6 NYISO Case Study: Probabilistic Forecasting

2.6.1 Case Study Overview

A case study using NYISO 2007 data is reported in this sectiaindgorobabilistic
scenario-conditioned forecasting algorithm presented in SectiolNXI$0 has a footprint
covering 11 load zones [56]. Short-term zonal load forecasting ddthiading constraints
data are available at the NYISO website [57].

This forecasting algorithm is applicable for power marketsgusither nodal or zonal
LMP pricing, since Proposition 1 does not rule out either form dfingi However,
NYISO’s website [57] only posts daily zonal load data for itdabll zones, which makes it
impossible to forecast prices down to each node. In addition, histth¥d&8O price data
reveal the similarity of LMPs within some of these 11 load zdmesce the negligibility of
inter-zonal congestion between these zones. For this reas@duierour computational
burden without any significant loss of information, we chose to redweceriginal 11 load
zones for the NYISO to 8 load zones by combining Zone Millwood withvibodie, and
Zone West and Genesee with Central.

The top 25 most frequently congested high-voltage transmission lineg @007 for
the NYSIO day-ahead market are studied in [58]. The focus ofas& study is on the five
most frequently congested high-voltage transmission lines during 2@@cifically,
DUNWODIE 345 SHORE RD 345 (D-S), CENTRAL EAST-VC(C-V), PLSNTVLY 345
LEEDS 345 1(P-L), WEST CENTRAL(W-C), SPRNBRK 345 EGRDNCTR 345(8-E).

Since the marginal status of generating units is not availabla the NYISO, the

www.manaraa.com



37

conditioning scenario for this empirical study is taken to be thiéaaidy of these five lines.
System patterns are thus equivalent to congestion patterns for theseefve li

Regarding time period, we selected 12 test days consisting ¢hghelay of each
month in 2007. The 24 operating hours starting from 0:00 for each test dayreeted as
future operating points. Forecasted load data at these hours veer¢ousientify system
patterns and to generate system variable forecasts. Thesasterk results were then
compared with actual realizations to evaluate the performarmer @igorithm. Due to space
limitations, graphical illustrations are presented only for Jan@at* and February 28
numerical results for the last days of other months are given in tables.

All calculations for this case study were implemented usingaida/.8 on an Intel
Core 2 PC with 3.0GHz CPU. The computational time for each daigcést was about 2

minutes.

2.6.2 Implementation of Probabilistic Forecasting

Historical price and load data were first processed to idehidtorical system
patterns and SPRs, which is Step 1 of our probabilistic forecaslgugithm. Sorted by
congestion patterns, about 19 to 30 historical system patterns (hHeRsg Bere found for
each forecasted day. For example, the four most frequently obsEmgestion patterns for
January 3% are shown in Table 5. System patterns for other days are categoridadysimi

Step 2 of our algorithm was then carried out. Specifically, thatseéysmatrix and
ordinate vector for each historical SPR were estimated by oydeast squares, making use

of the actual system operating points observed for each historical system.pat
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Table 5. Four most frequent historical congestion patterns for 01/31/2@

Pattern D-S C-v P-L S-C S-E
P1 1 0 0 0 0
P2 0 0 0 0 0
P3 1 1 0 0 0
P4 1 1 0 1 0

In Step 3, forecasted load data for the 24 operating hours of eadayesere then
treated as possible future load points. For each of the latter pihiatprobabilistic point
inclusion test detailed in Section 2.4.2 was used to assign estic@tditional probability
assessments (4) giving the probability that this future load poistcaatained within each
historical SPR. In these Step 3 calculations, we first evaltia¢efbrecasting performance of

three values (0, 1, and 2) for the normalization parameter(5) on the basis of historical
data. The specificatiop = 2 gave the best forecast results for most historical deyse,

this value was chosen to forecast system variables for the future load points.

Finally, in Step 4 the results of Steps 1-3 above were used toagempeobabilistic
forecasts in the form of mean and interval forecasts. Fomt#en forecastsymp was set
equal to the cardinalit¢Rof R". For the interval forecastsmpwas set equal to 4.

For the interval forecasts, the sizerwhp (i.e. the cut-off number of most probable
SPRs) depends on the forecaster’s desired trade-off betweea@cand precision. A larger
nmp tends to increase forecasting accuracy, in the sensehthrat is a better chance the
correct SPR will be among the considered SPRs. On the other hangketiision of any
resulting mean forecast is correspondingly reduced (i.e., thenward the forecasts across

the considered SPRs is increased). In the current study, th&csgeci nmp=4 is used for
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interval forecasts because it results in good precision withgatfisant loss of coverage

probability.

2.6.3 Congestion Pattern Forecasts

Table 6 reports the four most probable hourly congestion patterns, aitmthair
associated estimated conditional probabilities and coverage propb@iil{based ommp=4),
for every fifth hour of January 312007, starting from hour 0:00. Actual congestion patterns
corresponding to each reported hour are highlighted in gray. As se¢he fiaaported hours
the actual congestion pattern is always included among the fa@oamtgestion patterns
and has the highest estimated conditional probability. For futurenefe, note also that the
first entry of the actual congestion pattern, corresponding tontiasi®n line D-S, is always
1. This indicates that D-S is frequently congested.

The multiple forecasted congestion patterns associated wdth regorted hour in
Table 6 represent several credible congestion scenarios that coutdiro¢khe future. If a
forecaster desires to derive one forecast for the future congegsttern, an intuitively
reasonable option would be to select a forecasted congestion pattehaghidte highest
associated conditional probability (4). As observed in Table 6, forade study at hand this
approach would result in the correct prediction of the actual cooggsattern for each
reported hour. In general, however, more reliable forecasts $tersyconditions and DC-
OPF system variable solutions would be obtained by making fulleofuige conditional

probability assessments (4) to form mean forecasts and interval ferecast
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Table 6. Forecasted congestion patterns versus the actual pattern on 01/31/2007

Time Forecasted Probabilities CP Actual
1 0000 0.3632
) 0O 0O0OODO 0.2411
0:00 11000 0.2066 0.9541 1 0000
11010 0.1432
1 0000 0.3451
) 0O 0O0OODO 0.2043
5:00 11000 02418 0.9398 1 0000
11010 0.1486
1 0000 0.4237
_ 0O 0-1 00 0.0236
10:00 11000 0.3654 0.9426 1 0000
11010 0.1299
1 0000 0.3661
, 0O 0-1 00 0.0271
15:00 11000 0.4243 0.9452 11000
11010 0.1277
1 0000 0.4247
. 0O 00O0OD O 0.0244
20:00 11000 03612 0.9435 1 0000
11010 0.1332

2.6.4 Mean Forecasts for LMPs

One of the benefits of congestion forecasting is to enable dne pnecise prediction
of LMPs for market operators and traders in their short-term decisiomga&arecasted and
actual LMPs for Zone Central on Jar’'3thd Feb 28 are shown in and Figure Boot Mean
Squared Error (RMSEpnd Mean AbsolutePercentage Error (MAPE]11] are used as

measures of forecast accuracy:

1 24
RMSE: \/az (LMRaCtUal _ LMFi)forecast)z (11)
i=1
1 24 LM Pacutal _ LMPforecas[
MAPE - Z_ | I LMPactuaI l | (12)
i=1 g
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Figure 9. Actual versus mean LMP forecasts for Zone Central on 01/31/2007
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Figure 10. Actual versus mean LMP forecasts for Zone Central on 02/28/2007

Table 7 reports the RMSE and MAPE obtained using our probabil@gcdsting

algorithm for each of our 12 test days. Corresponding forecastsresthined using a well-

known statistical model — the Generalized Autoregressive Conditldetdroskedasticity

(GARCH) model [10]- are also shown for comparison. As seen, eXcephe slightly

smaller MAPE value attained in February using GARCH, our &stng algorithm

outperforms GARCH in the sense that smaller RMSE and MAPE values are obtained.
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Table 7. RMSE and MAPE values for the twelve test days

Day RMSE MAPE
Model Proposed Alg. GARCH Proposed Alg. GARCH
01/31/2007 5.026 8.689 0.0525 0.0902
02/28/2007 3.393 4.465 0.0472 0.0384
03/31/2007 4.029 7.094 0.0677 0.0727
04/30/2007 4.853 8.297 0.0535 0.1005
05/31/2007 7.401 14.741 0.0934 0.1198
06/30/2007 3.439 13.359 0.0679 0.1485
07/31/2007 3.941 11.623 0.0530 0.1082
08/31/2007 4.076 5.913 0.0671 0.0781
09/30/2007 3.249 6.636 0.0603 0.0862
10/31/2007 4.135 8.561 0.0638 0.1176
11/30/2007 6.476 7.208 0.0770 0.0855
12/31/2007 7.051 14.185 0.0903 0.1435

2.6.5 Interval Forecasts for Line Shadow Prices and LMPs

Interval forecasting is recommended over mean forecasting for lidewshaices. As
clarified below, interval forecasting is more informative thasam forecasting for line
shadow prices because the underlying attribute of interest (neghtection, zero, or
positive-direction congestion) is measured by a discretely-valued indfehtor, or 1).

Hourly upper-bound and lower-bound interval forecasts for the line shadces pn

line D-S on January $1and Feb 28 are shown in Figure 11and Figure 12 along with actual
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line shadow prices for comparison. As seen, the actual line sham®s far most hours fall
within the forecasted intervals.

To better interpret these findings, consider the Table 6 rasghith forecast that line
D-S (the first congestion pattern entry) will be either catepk or not during hour 20 with
varying probabilities. If congestion is forecasted, it is in plositive direction (+1); and,
from Figure 11, the line shadow price is estimated to be about $60/@Wthe other hand,
if no congestion is forecasted (0), then from Figure 11 theskaelow price is estimated to
be $0/MWh.

One final point for interval forecasts for line shadow pricemortant to note. For
lines for which no congestion occurs in any of the reported cbagemtterns (e.g., line S-E
in Table 6), the corresponding upper and lower bounds for the forecastesh&dow price

interval will both be zero, indicating zero congestion.
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Figure 11. Actual versus interval D-S line shadow price forecasts on 01/31/2007
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Figure 12. Actual versus interval D-S line shadow price forecasts on 02/28/2007

Interval forecasts for Zone Central LMPs on Januafye8tl February 28are shown
in Figure 13 and Figure 14 along with actual LMP values for congrarior most hours the
actual LMP values fall within the upper and lower bounds of the forecasted intervals.

The interval forecasting performance for line shadow prices and zdBk is
measured using the accuracy-informativeness tradeoff model dedelop¢59]. The

statistical loss functiohOSSis defined to be

Loss= Y=, sincg) (13)
g
In (13), ydenotes the actual valusydenotes the midpoint of the forecasted interval,
and In(g) denotes the natural logarithm of the widtbf the forecasted interval. Als@o,

determines the tradeoff between accuracy (the first term)rdodnativeness (the second
term); in this case study is set to 1. Note that a smalleDSSindicates better performance

for interval forecasting.
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Table 8 gives theeOSSvalues for the interval forecasts obtained for line shadow
price and zonal LMPs using our probabilistic forecasting algoritiensus the forecasts
obtained using a statistical GARCH model. As seen, our probabflisgcasting algorithm
results in uniformly lowerLOSS values than GARCH, indicating a better forecasting
performance.

A possible explanation for this performance difference is that GARas difficulty
handling the volatility of line shadow prices, which can abruptly gbdrom O to large non-
zero values. In contrast, our probabilistic forecasting algorithptuoes the physical

meaning of these line shadow prices and this facilitates better fongcasti
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Figure 13. Actual versus interval LMP forecasts for Zone Central on 01/31/2007
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Figure 14. Actual versus interval LMP forecasts for Zone Central on 02/28/2007

Table 8. Loss function values as a measure of interval forecasting pemnance

Day Shadow Price Forecasting LMP Forecasting
Model Proposed Alg. GARCH Proposed Alg. GARCH
01/31/2007 3.824 4.063 2.896 4.196
02/28/2007 3.729 3.977 2.835 3.649
03/31/2007 3.236 3.672 2.574 3.633
04/30/2007 3.398 3.778 3.133 4.164
05/31/2007 3.493 4.187 3.421 4.032
06/30/2007 3.838 3.897 3.365 4.425
07/31/2007 2.726 3.350 2.839 4.892
08/31/2007 2.916 3.352 2.787 3.624
09/30/2007 3.140 3.567 2.245 3.965
10/31/2007 2.825 3.335 2.725 3.799
11/30/2007 3.256 3.738 3.088 3.537
12/31/2007 3.481 3.962 3.164 3.919
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In this study we observed that, in some months (January, May, Noveamkr,
December), the peak-hour LMPs and line shadow prices wéreuldito forecast with
precision. This phenomenon could possibly be due to changes in the generating
commitment pattern or in the transmission network topology overotleedst horizon. To
enhance peak-hour forecasting results, more careful collection tofitas data might be
needed to ensure that these historical data correspond to the saméncent-and-line
scenario as the forecasted point. Alternatively, as discusgbé following Section 2.7, an

extended cross-scenario forecast study could be attempted.

2.7 Extension to Cross-Scenario Forecasting

To this point, the forecasting algorithm developed in this studybes conditioned
on a given commitment-and-line scenar® specifying a particular generating unit
commitment pattern and a particular transmission network topology.in@mpretation ofS
is that it represents anticipated conditions at a future opgrptint for which forecasts are
desired. Another interpretation 8fis that it represents a possible future system contingency
(e.g., an N-1 outage scenario) under consideration in a contingency planning study.

A possibly useful extension of this algorithm would be to assign pridiegito
distinct scenarios, thus permitting the probabilistic cross-sicefdending of forecasts.
These scenarios could be characterized not only on the basistemspatterns, i.e.,
generating unit commitments and transmission network topology, $mal the basis of a
variety of other types of contingencies.

As illustrated in Figure 15, for any future operating point whostesy conditions

need to be forecasted, the corresponding generating unit commitraastnission network
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topology, and other contingencies could be projected with some prakabilit each of
these projected scenarios, our scenario-conditioned forecastinghatgoauld be applied to
estimate congestion, LMPs, and other system variables. Thddneahst for any system
variable of interest could then be the expected value of thismsysiriable calculated across

all projected scenarios.

Historical operating points

Scenario 1 Scenario 2

System <:> <:>
{ Pattern
Y 2

New forecasted point

Figure 15. Scenario-conditioned and cross-scenario forecasting
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CHAPTER 3. TRANSMISSION INVESTMENT FOR INTEGRATING

RENEWABLE ENERGY

3.1 Introduction

In this chapter, a method is proposed to support the negotiation processewable
energy integration between a Renewable Energy (RE) Generation Go(Ria&GenCo) and
a Transmission Company (TransCo). The process begins with anprdelelopment of
transmission plans by the two companies, taking into consideratomtérmittency of
renewable energy such as wind generation. Then the payment froREtenCo to the
TransCo is negotiated. If the payment is low, the TransCo nmayfully recover its
investment; if the payment is high, the RE-GenCo is not profitatdacéithe parties could
fail to reach an agreement. Note that this study can alsoteedex to include a LSE who
can contract to purchase a certain amount of renewable energy.

Nash Bargaining theory is applied to determine the transmissiestment plans and
RE-GenCo’s transmission payment. The Nash bargaining solution giagsaad efficient
utility allocation for the two companies. The negotiation methodolegwell as its results
provides guidelines to transmission investors for integrating raplewenergy under
uncertainties. The negotiation is then compared with a centralized planningtmedaluate
renewable energy subsides. The comparison shed light to poligrsmak designing proper

renewable energy subsidies.
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Indices and sets:

QET
QCT
QG
QL

Parameters:

50

3.2 Nomenclature

Index for buses

Index for scenarios

Index for subperiods

Index for generators

Index for loads

Index for supply or bid blocks
Index for transmission lines
Sending-end of transmission like

Receiving-end of transmission like

Index for the bus where renewable generation will be invested

Index for the renewable generator invested by the RE-GenCo

Set of all system buses

Set of all subperiods

Set of all scenarios

Set of generators at Bus n

Set of loads at Bus n

Set of blocks of Generator i

Set of blocks of Load j

Set of traditional generators

Set of renewable generators

Set of existing transmission lines
Set of candidate transmission lines
Set of all system generators

Set of all system loads
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Duration of subperiotl

Offer price of thebth block by thath generator

Bid price of thebth block by thgth load

Annualized investment cost of transmission kne
Size of thebth block for thath generator

Size of thebth block for thgth load

Size of thebth block for thath renewable generator at subpetidal
scenarics

Transmission capacity of lirle

Transmission reactance of like

Parameter of renewable energy subsidies
Annualized investment cost of renewable generation
Threat point of the RE-GenCo

Threat point of the TransCo

Renewable energy contract price ($/MWh) for RE-GenCo

Decision variables:

3.3.1 Overview

Electricity produced by thieth block ofith generator at subperiddh scenarics.
Electricity consumed by thath block ofjth load at subperiodin scenaric.
Negotiated payment from the RE-GenCo to the TransCo.

Power flow of transmission lineat subperiod in scenarics.

LMP of Busn at subperiod in scenarics.

3.3 Problem Formulation

This section describes the negotiation process between a RE-G@rd@oTransCo.

Assuming that a RE-GenCo has decided to invest in a RE projacteatote location, the
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RE-GenCo can pay a construction company to build the interconne@msmission if, in
the business case, the RE-GenCo can demonstrate with certainty thatebeegrojitput and
the electricity price allows it to recover both the generaind transmission investments. In
this case, the RE-GenCo would assume all profit risks and uimtieaHowever, due to the
intermittent nature of the generation output, the RE-GenCo may mittevalo so. Instead,
the RE-GenCo may seek out a TransCo who is interested in inviestragsmission, to bear
part of the risks. The risk transfer is consummated by the RiEGeaying the TransCo a
transmission rate, based on the projected generation performanceenditgl prices, for
recovering the transmission investment. The payment, measuredrate a ($/MWh)
multiplied by dispatched renewable energy (MWh), necessitatesgotiation among two
parties.

To simplify the discussion, several assumptions are made. Firsytithies are
presented in annualized terms in the sense that the calculationdigcted for a typical year
with annualized cost components. Second, maintenance costs are noithexpbdeled
since an annualized maintenance cost can be included as part ohnih@ aapital

investments. Third, a risk neutral attribute is assumed sth&E-GenCo’s utilityJ ..and
the TransCo'’s utilityJ, can be expressed as expected profits of the two participant® Thes

simplifications can be easily relaxed.

3.3.2 Negotiation Process

Two possible outcomes can be reached during a negotiation; amagtas reached

or both parties walk away. For the first outcome, an agreemesadbed if the RE-GenCo,
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after paying the negotiated transmission rate, can recovgenration investment and, at
the same time, the TransCo can recover its transmission investment.

A bilateral contract signed with LSEs is assumed for the REIS to manage price
fluctuations in an electricity market. This assumption is valdes a number of electric
utilities have issued long-term (10+ years) power purchaseragréas, according to [60].
Considering the projected generation output and a payment to the drameCultility

function of the risk-neutral RE-GenCo given a set of future scen@xids defined by

Upe=Eqoqo Y DI[FP+SUB-4 R~ &J (14)

teQr

RG bpG
Wherects = Z j’l, F?,bts !

representing production cost for the RE unit. eNthat the

beal
generation investment can be included in (14). Haweit is, instead, used as the RE-
GenCo’s threat pointre.

If the RE-GenCo does not sign bilateral contradth WSESs, it confronts an exposure
to market price uncertainties. The utility functi@id) can be modified to a market-based
versioru ., taking into account market-based electricity gsi@t its buR (i.e. Locational
Marginal Prices (LMPSs)).

Ugle = E&QS z Dt[[ LMPg+ SuUB-1] Frs™ C‘f{G] (15)

ts.
teQr

For the TransCo, if an agreement is achieved, tbétollected by the TransCo
from the RE-GenCo's payment with the subtractiontrahsmission investment can be

expressed as

Ur =Eyo, 2, DIARd— 2 ICTY, (16)

teQr keQ®T
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In the alternative in which no agreement is reaclhieel transmission investment will
not occur. In this case, the failure to reach areemgent results in the RE-GenCo utility

function arriving at its threat pointl,;, which is set as the stranded RE generation
investment|C; . Likewise, if the TransCo receives no payment, TransCo’s utility

function is settled at its threat poid{ which equals O.

With knowledge of the utility functions, threat pts and projected market conditions,
a negotiation process is initiated on the transimssnvestment plan and the associated
transmission rate/payment. The process is depiotétigure 16. While the two companies
negotiate, they anticipate the market operationsghesults (LMPs, generation outputs and
transmission flows) in turn will affect their attad profit. Therefore, they tend to choose the

transmission plan and payment rate which benefitmost.

Negotiation
URG: UT: dRG; dT

F ee

Negotiation variables: Operation variables:
Negotiated rate LMPs

Transmission plans Generation outputs
Transmission flows

ISO market
operation

Figure 16. Negotiation between the RE-GenCo and the TransCo

In the negotiation process, both the RE-GenCo amel TransCo take into
consideration the intermittent nature of the gemmmaoutput, the planned transmission

capacity with its associated investment cost, &edetectricity prices. Due to the complexity
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and inter-relationship between the negotiated tesuid the transmission investment plan, it
entails a careful examination of negotiation metifogy and solution, which is presented in

Section 3.4.

3.3.3 Policy implications on RE subsidies

Optimal transmission investment plans are aimedpblcy makers to maximize
social surplus, but cannot be directly imposed arcmant transmission investment in a
competitive market environment. A possible approgxisteer the negotiated transmission
investment plans towards the social optimal invesiinis to make use of the controllable RE
subsidy paramete8UB an important component in both companies’ utilitgctions. With
everything else unchanged, the negotiated solutamnbe expressed as a non-linear function
of SUB By adjusting this RE subsidy parameter, policykera then can possibly alter the
negotiated solution to match the social optimaigraission investment plan.

The social optimal solution is derived from a calited transmission planning. The
objective is to maximize social surplus (the ogerasurplus minus transmission investment
cost, subject to operation and planning constraientrasting the negotiated solution with
the centralized solution, an optimal RE subsidyapeeter can be obtained to provide
guidance to policy makers. The details of the mockwhstruction and comparison are

illustrated in Section 3.5.

3.4 Negotiation: A Nash Bargaining Approach

The result between the RE-GenCo and the TransCtheannegotiation process

described in Section 3.3 is solved by applying N@sh Bargaining theory. Specifically, a
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two-player Nash Bargaining problem and its soluttomcept are applied to the negotiation

problem to derive the analytical model and detalitechulation.

3.4.1 Nash Bargaining

The research on two-person bargaining problenmatiated by Nash [61], [62]. In his
seminal work, the bargaining problem is defined wi&o players, who negotiate over a
utility possibility setU, with their threat pointd =(d,, d,), try to achieve a settlement
pointu=(u, u,). Nash proved that for every bargaining prob{ehd), there is a unique
solution f(U,d)=(f,(U,d), f,(U,d)that satisfies the following four axioms.

) Axiom 1. Invariance to linear transformation: Foryanonotonic linear-affine
functionH , it requires thatf (H(U),H(d))=H(f(U,d)). This essentially needs the
solution be agnostic of any linear-affine transfations, i.e. shifting and scaling.

) Axiom 2. Symmetry: ifd=d, , (u,u)eU and (u,,u)eU ,
thenf,(U,d) = f,(U,d). This indicates that the solution should provatgial gains from
the cooperation when the feasible utility $&ts symmetric.

) Axiom 3. Independence of irrelevant alternativesr ftwo bargaining
problems(U,d)and(U’,d), if f(U,d)eU, thenf(U)= f(U,d). It basically says that
the addition of irrelevant alternatives does narafe the solution.

. Axiom 4. Pareto efficiency: ifiand u are two utility points in a bargaining
problem (U,d) andu > u, thenf (U,d) # u. This axiom requires the pareto-optimality of

the bargaining solution.
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The unique bargaining solution is then obtaineddlying the following optimization

problem:

f(U,d)= arg(maximize 4-d)o-d a7

Uy, Up)>(dy, dy)
(u,Up)eV

The objective is named Nash product, which is lateended in n-person bargaining
game [64]. The solution to this problem is refere@s Nash Bargaining Solution (NBS), an
important solution concept in game theory, haspitoperties of simplicity and robustness.
Empirical evidences to support NBS are indicateedperimental bargaining theory given in

reference [65].

3.4.2 Bargaining on RE Interconnection: An Analytic  al Model

Suppose that a RE-GenCo has decided to build adRErgting unit at some remote
location, and financing of the capit@l ($) has been secured. The maximum available output
of the RE unit is denoted byMW), a random variable with probability density fuocti
(pdf) g(r) and cumulative density function (cd®)r), subject to the variability of the
renewable resource. The model also assumes productistC,($/MWHhH) and renewable
energy subsidie§, ($/ MWHare constant.

As discussed earlier, the RE-GenCo (denoted bycsipb& in the formulation) seeks
out a TransCo (denoted by subsciipto invest in transmission lines to interconnéet RE
project and to deliver its output to distance lgadters. The per-unit cost to the TransCo for

the generation interconnection transmission isesgmted b, ($/ MWH). The price for the

renewable energy is represented by a fixed payBg8t/ MWh) . The two parties negotiate
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and try to reach an agreement on the paymenti@éMWh) corresponding to the agreed
upon transmission capacky(MW) .

Note that the output for the RE generatieyis constrained by the lower value of the
maximum available outputand the transmission capadiy, i.e.

P, =min(r, /) (18)
Using these representations, the RE-GenCo’s uiditiie expected profiEfg),

Uz = ERy[ D+ S— G- 4] (19)

and the TransCo’s utility is given as

U = ERA- RC (20)
Note that their threat points d(&,,0).

Applying Nash bargaining theory, the decisiariablesi and F, can be solved
by maximizing the Nash ProductioNR)
max, e NP=[u. (1, K)-Gl u(, R) (21)
The solution can be foundif; >0 andu, >0.

Take the first order derivatives with respectitaandF; ,

ONP ou,  au,

_ N 22
R AT (22)
R (T (23)
OF, oF, " oF,

Note that ER, in equations (19) and (20) is a function & due to (18),
ER, = E min(r, ). Whenr>F 1, min(r,F)=Ft; whenr<=F 1, min(r,F)=r, the expectation

then is
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ER, = R-Pr(r>F)+Er |

= F[L-G(F)]+ [ rg(ndr

- R-G(R))+ [} dran) - [ Gy ar 24
=F, - F,G(F,)+ F,G( FT)—IOFT () dr

=F, —IOFTG(r)d

From (24), the partial derivative &R, with respect toF, can be expressed as

OEP,
oF,

=1-G(F.) (25)

The partial derivative ofi,and u, with respect tol and F; can be obtained, i.e.,

dug | 9 = —EP, (26)
U, | OF, =[1— G(F,)] X[ Dg+ Se— Co—1] (27)

ou, /64 = EP, (28)
ou; | OF, =[1- G(F,)]x A - C; (29)

Insert equations (26)-(29) into equations (22) &8},

T —-ERxu + ER[4- G (30)

ONP
oF,

The solution can be found when the above two egugtequal to 0. Then equation

=[1-G(R)[Dr+ S~ Ge-Ax uHl - € RIA- Q] u- ¢ (31)

(30) becomes

ER[U— G~ u] =0 (32)

The expected RE outpiR; is normally positive, and hence (32) satisfies amhen

U =G =t (33)
which is the logical outcome in which the utility equally divided between the RE-GenCo

and the TransCo.
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The relation between and F, can be derived by replacing,and u; in (33) with (19)
and (20)

ER[ D+ S- G-l - G= ER- RG (34

Re-expressing the equation, one obtains

_ DR+SR_ CR_CO_ FTCT
2 2EP,

A

(35)
Similarly, set equation (31) equal to O, replage- C withu,, and omit positive, .

Equation (31) can be rewritten as

[1-G(F)I[Dg+ St~ G - =0 (36)
F; then can be solved in the following explicit form
F-1-GY—S (37)
Dr +Sg— Cy

and/ can be found by replacing; in (35) with (37).

It is observed the negotiated payment ratand invested transmission capacity
F, can be explicitly determined in this model with thensideration of the RE output
uncertainty. However, since the transmission immesit is lumpy in nature, the transmission
plan is likely to consist of a set of discrete sawission candidates. Hence a more careful
examination of the negotiation process and a @etaibrmulation to handle the lumpy

investment are needed.

3.4.3 Bargaining on RE Interconnection: A Detailed Formulation

The bargaining process on RE interconnection ismibated as a bi-level

optimization problem. The Nash product is maximizethe upper level problem, while a set
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of lower problems represents the market operatamiipated by the RE-GenCo and the

TransCo, for every hourand scenaris.

The detailed formulation is given below, with th&&enCo's utilityU;and the
TransCo's utilityJ, denoted by (14) and (16). Suppose the negotiasiantended to connect

the RE unit, at Busr, the bargaining problem is then formulated as:

Max [Ugg Pr )= 1C ndxU 1 P oY ) (38)
Subject to
Upe(Pro4) = 1C o 39
U; (4, Pee Y,) = 0 40}
M D Y <R <MY Y, (41)
keQ®T keQ®T
Pes= D Pros 2f4

bEQ?
r

where B, Vte Q. ,VseQ =

argmax Y Y AbRh, - Y Y ISR, (43)
Pots Pibts jeQr be@ ieQ® beQP
Subject to
Z Z let_)ts+ Z Fkts_ Z Fkts: 01 (LMPms)’vnEQ \ (44)
jeQp be® Klo(k)=n Kr(k=n
0<PS <PSVieQ™ VbeQ (45)
0<PS <P VieQRf® VbeQ? (46)
1
Fkts:x_[5qk)ts_5(BtJ’ vkeQF (47)
k
~-F <F . <F,vkeQF (48)
-1-Y)M< Fkts—xi[&x pis— O (p J<A-Y) M,V ke Q°T (49)
k
-Y. F <F <Y, F,VkeQ"T (50)
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The upper level problem, consisting of equatior®)-(d0), reflects the requirement
in Nash bargaining problem. Inequality (41) is aidifional constraint demanding zero
payment if no transmission line is invested. Edua(#2) collects the total dispatched
renewable energy output from all offer blocks a& fRE unit which is to be interconnected.
For each hout and scenari®, a corresponding lower-level problem (43)-(50)aets the
market operation with LMPs, dispatched generatiotpat, and transmission flow. The
objective of the lower-level problems (43) is toxmaize market operation net surplus.
Constraint (44) enforces real power balance at éash Constraints (45) and (46) impose
generation capacity limit on non-renewable and weride generating units, respectively.

Note that the maximum available output for some R i, PS. varies in hours and

ibts
scenarios, allowing for the variability of renewalpésources.
Constraints (47)-(50) enforce transmission limitsr fexisting and candidate
transmission lines. Regarding constraint (49),dbestraint is active anil is set at 0 when
Y« = 1 or the investment decision is affirmative. Hoe® if Y = O or the investment
decision is negativayl is set to be a large number meaning that thisti@ingis not active
and therefore not considered.

This formulation could be modified to consider netrkased renewable energy price

(LMPs) received by the RE-GenCo, if it does noteenmto a bilateral contract. Its utility

function in objective function (38) can be repladgdJ v, (LMP,,, P 4) given in equation
(15). The utility function is now determined by bahe renewable energy productiy),

and its market priceMP;,,.
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3.5 Implications on Renewable Subsidy Policy

A centralized transmission planning model is désciin this section that will
provide a benchmark of social optimal transmissiomestment, for contrasting the
negotiated transmission plans described in Se@®idn Policy implications on renewable
energy subsidies will be derived by proposing aaldital model and a detailed formulation,
where renewable subsidies are used as a criticghl aaljustable parameter to steer the

negotiated solution towards a centralized solution.

3.5.1 Centralized Planning and Policy Implication

Suppose a centralized planner, who performs thditibaal Integrated Resource
Planning function, decides to interconnect a RE bgiplanning and investing in a new
transmission line. Considering the bendi ($/MWh) from the renewable energy, the
centralized planner needs to make a decision onnthested transmission capacigy to

maximize social surplus:

maximize SS= ERx B- ERx G- FQ (51)

The same notation in Section 3.4.2 is used in (bake the derivative o&Swith

respect td=r and set it equal O, i.e.,

dSS dER n ~;
dFT = dFT [BR CR] CT (52)
0=[1-G(R)I[B:-CJ - C; (53)

Fr in the centralized planning model can be solvggieidy as follows,

F=1-G" (Lj {54
BR - CR
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Comparing the negotiated solution (37) with the tdized solution (54), the
adjustable parameter of renewable energy subsigiesn be utilized to steer the negotiated
solution towards the benchmark solution by equatd?g and (54),

DR + SR_ CR = BR_ CF (55)

S:= B- Dy (56)
Equation (56) indicates that the optimal renewanlergy subsidies should be set as
the difference between the benefit from the RE g and the payment for purchasing
renewable energy. Of course, determining the beneteived is not a trivial task. In any
event, policy makers can use this result as guelémrcrenewable energy subsidy policy, and
establish a subsidy mechanism that provides metcimaestors with sufficient market

incentives for achieving social optimal transmissiovestment plans.

3.5.2 An lllustrative Example

A simple example is presented to illustrate the@ple of the negotiation model and
demonstrate the important role of policy in movihg bargaining solution to an idealistic
solution that is societal beneficial.

The bi-level negotiation process depicted in SecBal is elaborated by means of the
payoff matrix. The solutions for the negotiationae in the two situations with or without
renewable energy, are compared with that in the@éred model.

As shown in Figure 17, a RE-GenCo is going to makgecision on a wind farm

investment. The company has two options.
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e Option [1]: Investing at location [1] with cost $&V, it will be able to
generate 19MWh wind energy at the price of $1/M\alhg pay a rate,to
the TransCo for transmission investment cost regove

e Option [2]: Investing at location [2] with cost $&V, it will be able to
generate 13MWh wind energy at the price of $1/M\atg pay a ratéel,, to
the TransCo for transmission investment cost regove

Similarly, the TransCo has two options as follows:
e Option (1): TransCo will build the transmission ragopath (1) with capacity

19MW; its investment cost is $10, and TransCo kel from the GenCo.

e Option (2): TransCo will build the transmission ragopath (2) with capacity

13MW; its investment cost is $4, and TransCo rezeil,, from the GenCo.

Figure 17. Options for renewable generation and transmission investment
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Correspondingly, LSE will receive three differeaet¢ls of benefit, depending on the
negotiation results of the RE-GenCo and the TransCo
e Benefit (a): If both the GenCo and the TransCo eledad] and (1), LSE will
have a utility level of $14.
e Benefit (b): If they choose [2] and (2), LSE wilive a utility level of $10.
e Benefit (c): LSE will have 0 otherwise.
In the first case there is no renewable energyidubshe payoff matrix for the

GenCo and the TransCo then can be expressed asdoll

TransCo
(1) (2
1] [ @9x1-2-4y. 2, -10 (-2,-4)
GenCo 2] (-1,-6) (13x1-1- Ay Ag, — 4)

Their negotiated result is the solution to maximize product of their utilities, for

example,max, [19x1-2- A, |1, —10]. Therefore, the solutions ang =13.5, 1, =8.

The payoff matrix is then

TransCo
@ @
[1] (3.5,3.5) (-2,-4)
cenco g (-1,6) (4.9)

The payoff matrix for LSE is determined by the n#gjed result of the GenCo and
the TransCo.
TransCo
1) (2)
[1] 14 0
[2] 0 10

GenCo
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Following the analysis of Nash Bargaining theohg GenCo and the TransCo will
choose the option ([2], (2)) which maximizes thditity levels since Nash Product of (4, 4)
is greater than (3.5, 3.5).

Nevertheless, considering the social surplus whah involves the utility level from
LSE besides the two negotiators, the social optimadstment plan should be settled at ([1],
(). Indeed, the total social surplus achieved[iy, (1)), 3.5+3.5+14=21, clearly exceeds
the total social surplus by ([2], (2)), 4+4+10=18.

In this case, the negotiated result does not mgtehcentralized investment plan.
Hence, the social surplus maximization is not ackde

Now consider how subsidy can help to steer the tregd result to a centralized
social optimal solution. Suppose the RE-GenCo Issislized by $0.5/MWh. The revenue
stream of the RE-GenCo now includes this subsidgddition to the original energy sale.
Note that this subsidy will not alter the optimalwion for the centralized model; rather, it
will only re-distribute the total social surplus.

However, the payoff matrix for the RE-GenCo andThensCo has been changed:

TransCo
(1) (2)
[1] (19x1-2— Ag, +19% 05,4, —10) (-2,-4)
Genco [2] (-1,-6) (13x1-1- A, +13x 0.54,, - 9

The two companies negotiate the payment rate uhé@edifferent investment plans,

resulting in4,, =18.25 or 4., =11.2E.

The numerical representation of the matrix becomes

www.manaraa.com



68

TransCo
1 8 2(51)8 25) ((g) 4)
GenCo 2] (16) (7_25,’7.25)

Apparently, Option ([1], (1)) outperforms Optior2]] (2)) in terms of greater utility
levels for both companies. Therefore, ([1], (1)rdnmes the new negotiated result in this
subsidy environment. The subsidy $0.5/MWh indeealy®la crucial role in steering the

negotiated solution to a centralized solution amztessfully achieves social optimality.

3.5.3 Centralized Planning: A Detailed Formulation

The detailed formulation of the centralized plamgnimodel, which allows for

uncertainties and realistic constraints, is presgebelow.

maximizeE.o > D[}, 2 ApPpe— > 2 AnPecl- 2, ICTY, (57)
ibts » Fjbts Yk teQ; jet bEQll? i€Qg beQP keQ®T
Subject to

VteQ,,VseQg

(44)— (50)
The objective function is to maximize social sugpltomposed of operation surplus
minus the transmission investment cost. The operatbnstraints are identical with the ones

in the negotiated model as given in equations (88)-
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3.6 Numerical Results

3.6.1 Garver’'s Six-Bus Test Case

The detailed formulation for the negotiation on RiEerconnection is studied with
Garver's six-bus test case in Figure 18, which cmap six buses, six existing transmission
lines, three generating units, and five loads. Géeerator at Bus 6 is assumed to be a RE or
wind resource. In this study, transmission linesveen Bus 6 and the grid are needed to
deliver the RE output to the load. The supply offerd demand bid data for the two
traditional generators and 5 loads are given inlef@b The number and size of blocks vary
for each market participant.

A constant production cost is assumed for the vgaderator WG3 at Bus 6 and its
cost and operation data are given in Table 10.tHind column is its investment cokIrc
that will be used as the RE-GenCo’s threat poirth&n negotiation process. The renewable
energy contract pricéP is given in the fourth columrP e denotes the nameplate capacity
of the wind unit. The maximum possible outg®#a.x is characterized by the non-linear
function between wind speadand P4, With three parameters of WG3: cut-in, cut-out and

rated wind speell;, V¢, andViae. The non-linear feature can be described by thewitng

[30]:
0 O<v<y,
P - Prate (V_ Vci) / (\/rate - \/CI) \{:i = K Vate
e Prate Vrate SATAS Vco (58)
| 0 V.o< Vv
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Table 9. Generator and load data

Generators Loads
Bus G  Offer Size Offer Price L Bid Size Bid Price
(MW) ($/MWh) (MW) ($/MWh)
1 G1 [200;100;100] [21;23;28] L1 [40;40] [43;30]
2 L2 [80;80;80] [54;50;48]
3 G2 [210;210;140] [30;34;43] L3 [20;20] [30;26]
4 L4 [80;80] [45;32]
5 L5 [80;80;80] [50;42;30]
Table 10. Wind unit data
B N Investment Cost ep P v v v
us ame i
Cost (16$) ($/MWh) rate Cl rate co
6 WG3 10 2 12 600 4 10 22
L5 L1 G1

; Bus4 =
RE-GenCo L} TransCo L4

Figure 18. Garver’s six-bus test system
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Table 11. Transmission data

From To Reactance Limit Cost

Name Bus Bus (Q) (MW)  (10°$) Type
T1 1 2 0.4 250 - E(xisting)
T2 1 4 0.6 220 - E
T3 1 5 0.2 300 - E
T4 2 3 0.2 300 - E
T5 3 5 0.2 300 - E
T6 2 6 0.3 150 8.0 C(andidate)
T7 2 6 0.15 300 13 C
T8 3 6 0.4 150 9.2 C
T9 3 6 0.3 200 10 C
T10 4 6 0.3 200 11 C

Table 11 presents the data for the existing andlidate transmission lines. Five
transmission investment candidates (T6-T10) ar@gsed with the intent to connect Bus 6
to the grid. The pattern of transmission costsofedl the economies of scale, e.g. building
one 300-MW line between Buses 2 and 6 is less esxpehan building two 150MW lines

connecting these two buses.

To accommodate the variability from wind resouritege scenarios of wind speed

are constructed for four subperiods in a year, Wwhice represented by four seasons with
equal time duration, i.e%-876(2h: 2190. The wind speed data in each scenario and

subperiod is given in
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Table 12 Using the function (58), the maximum possiblepotitof WG3 can be
calculated, and the result is shown in Table 13eNbat the wind unit normally generates

more renewable energy during the Fall and Wintasse due to ample wind resources.

Table 12. Scenarios of wind speed in four subperiods

Scenario Spring Summer  Fall Winter
S1=High wind 7 5 10 9
S2=Medium wind 5 5 8 9
S3=Low wind 2 1 5 8

Table 13. Maximum possible output of wind energy

Scenario Spring Summer Fall Winter
S1=High wind 300 100 600 500
S2=Medium wind 100 100 400 500
S3=Low wind 0 0 100 400

3.6.2 The Negotiated Solution with Renewable Energy ~ Contract Price FP

All combinations of the 5 transmission candidateserexamined and no negotiation
solution is reached without a subsidy. The renesvadiergy subsidy is then fixed at
SUB=$5/MWh and the negotiated solutions are examirgdgurenewable energy contract
price FP. The negotiated transmission investment pYanis reported in Table 14. The

negotiated payment and the attained utility levels for each party gireen in Table 15.

www.manaraa.com



73

Table 14. Negotiated transmission investment decisiofy

Candidate Ys Y Ys Yo Yo
Decision 0 1 0 0 0

Table 15. Negotiated results of payment rate and attained utilities
Urc(10°$) UrcICra(10°8)  U(10°$) Jr ($/MWh)
10.54 0.54 0.54 8.43

It is observed that in the settlement, the RE-Gen@ald like to pay the TransCo
$8.43/MWh for recovering the cost of transmissioveistment on candidate line 7. The value
of the 29 and & columns are identical, indicating the utility faion for the RE-GenCo is
the same as the utility function for the TransCe.(lequal utility split) which verifies

equation (33) established in the analytical modebfrgaining over transmission investment.

3.6.3 The Negotiated Solution with Market-Based Pri  ce LMP

Although most renewable energy developers enterhitateral contracts to secure a

fixed electricity price, they can also choose toeree LMPs in market settlement. In this

situation, its market-based utility functidhly, is used in the negotiation process. Using the

same subsidy paramet8UBat $5/MWh, the new investment transmission p¥fi and the

associated utility levels are shown in Table 16.

The market-based negotiation results show more sin&sion investments.
Specifically, the resulted plan suggests buildingés to Bus 2 and 1 line to bus 3, making
the wind generator bus an integral part of theesgstComparing Table 16 with Table 15, a
significantly higher utility and transmission raee also attained. For examplg; is raised

from $0.54 million to $11.73 million and the negaéd rate is $18.88/MWh .The increases
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are due primarily to higher generator revenues ftdiiPs than that obtained from contract

price FP.

Table 16. Negotiated transmission plaryy' and utility levels

Ye Y7 Yg Y9 Y10
Trans plan
1 0 1 0
Utlllty UQAG UQ"G-ICRG UT AR
levels 2173 11.73 11.73 18.88

By investing in the 3 lines and transforming th@emator bus into a system bus, the
RE generator output are not constrained in anyasten Hence, the energy price or LMP for
the RE generator output is always determined byst{fsgem marginal units and not by the
cheaper wind generator. As a result, the expecigioeh generator revenue due to higher
market-based price (LMP) allows the RE-GenCo to enhigher profits and to pay for

additional transmission.

3.6.4 Centralized Transmission Planning

In Section 3.5.1, an optimal RE subsidy param&B is explicitly obtained for
steering the negotiated solution on transmissimestment to the social optimal solution.
This section will examine the possibility of adjagt RE subsidy parameter to achieve the
goal in a more comprehensive formulation.

As shown in Section 3.5.3, optimization problem)(%/ solved for the centralized

solution targeting to maximize social surplus. EbkitionYc is then obtained in Table 17.
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Table 17. Centralized transmission investment decisioYi
Candidate Y Y~ Ys Yq Y10
Decision 1 1 0 0 0

Compared to previous negotiated results, candidael6 and T7 are the 2 lines to
be invested by the centralized planning in orden&ximize the social surplus. The achieved
social surpluses under different investment decssiare compared in Table 18. The
centralized planning gives the maximum social sigpWhile the negotiated decision, when
the RE-GenCo is settled at market-based prices—L.vi#sllts in the lowest social surplus.
This is not surprising since the negotiation betwé¢ige RE-GenCo and the TransCo is

focused on their profits from the investment decisand not on the overall social surphs.
gives low social surplus due to underinvestmentansmission lines (T7), and)' results in

an even lower social surplus due to the overinvestrm transmission lines (T6, T7 and T9).

Table 18. Social surplus under different investment decisions

Decisions Yy Y A

Social Surplus ($19 137.96 136.38  142.55

3.6.5 RE Subsidy Sensitivity Analysis

This section is concerned with the possibility djusting the subsidieSUBto drive
the negotiated solution towards the maximum sosigplus derived from the centralized
planning decision. The sensitivity analysisS1B on transmission planning decisions and
negotiated payment rate are shown in Figure 19¢Eig.

Note that the simulation result includes the usenefative values foISUB

representing penalties rather than subsides foergéng renewable energy. This negative
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value can be used to model cost overrun, high &ilmhicharges on capital, or costs incurred
from project delay.

Figure 19 shows that there is no negotiated trasson plan whelSUB is between
$-10/MWh and $5/MWh. WherSUB is between $7/MWh and $41/MWh, the negotiated
result is [1 1 0 0 0], which is exactly the cenadl plan and the maximum social surplus
solution. Beyond $42/MWh, even though the highebsslies would afford more
transmission investments, the resultant sociallgsiip less than the case when the subsidy is
between $7/MWh to $41/MWh. This implies that, pglimakers can always increase
subsidies to incentivize transmission investmentattain the maximum social surplus goal.
Nevertheless, excessive subsidies can lead to tremremission but not necessarily higher

overall social surplus.

1
mY6
Trans BY7
Plan
Y§
BY9
T T T —_—

0 ;
$10t084  $510%6  $Tto$4l  $42t0$30 syB "Y1

Figure 19. Transmission plan variation underSUB with contract price FP

However, when RE-GenCo receiveBIP instead ofFP, Figure 20 shows that the
subsidy SUB has limitations to function as a controllable paeter for steering the

negotiated transmission investment decision tostiaéal optimal solution. This implies that,
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due to the LMP uncertainty, subsidies may helpetch an investment decision but may be

restricted for achieving social optimal investmplains.

1 v
mY6
Trans =Y7
Plan mYS
mY9
g .Y]-O
0 T :
$-10 to $'4 $-5 to $50 SUB

Figure 20. Transmission plan variation underSUB with market-based priceLMP

This observation is further demonstrated in Figieand Figure 22 in which the
negotiated transmission rate increases piece-vingarly with subsidies. Figure 21 also
shows step changing of, when SUB alters the negotiated transmission plans. However,
Figure 22 exhibits only one-time step up of paymeé when subsidies are sufficient to

form an agreement in the negotiation. No more stgmging but only linear changing af

is shown after the agreement, due to the limitedrodlability of subsidies.

40
35
30 /
25 _—
ie 20 /
15 /
10 /
X 'd
N L
.10-7 -4 -1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50
SUB

Figure 21. Payment rate variation underSUB with contract price FP
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SUB

Figure 22 Payment rate variation underSUB with market-based priceLMP

Based on the observations, this case study leatie following suggestions:

(1) The Nash Bargaining theory guides the negotigirocess. The results show that
the RE-GenCo and the TransCo equally split utditettained from renewable energy
investment. The Nash Bargaining solution renderia and efficient utility allocation
between the two companies.

(2) Subsidies are critical for RE-GenCos and TCarssto reach an investment
agreement during the proposed negotiation prodesan also steer the negotiated solution
to the centralized solution which achieves maxinmagmial surplus when the electricity price
is fixed through renewable energy contracts.

(3) Due to market price uncertainties, the cotdaholity of subsidies is limited when
RE-GenCos do not sign a renewable energy conffad.limitation needs to be recognized

in the design of subsidies.
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CHAPTER 4. CONCLUSION

4.1 Summary of the Dissertation

This dissertation addresses the issues associdthdtive short-term transmission
operation and long-term transmission planning. Agsstion forecasting algorithm is
developed to assist market operators and markgtipants in short-run decision making. In
long-term transmission planning, the issues of tiaggon and policy making for integrating
renewable energy are investigated.

Short-term congestion forecasting is critical favthb market traders and market
operators. Congestion forecasting helps to exm&ntricity price behaviors and facilitates
decision making of power market participants.

In Chapter 2, this dissertation proposes a basemas@-conditioned forecasting
algorithm that permits the short-term forecastirigcongestion, prices, and other power
system variables conditional on a given generaimgcommitment pattern and transmission
network topology. This basic algorithm uses theah@oncept of “system pattern” to permit
structural capacity constraints on generation aansmission to be taken into consideration
in the forecasting procedure.

To handle practical data-availability concernseatension of this basic algorithm is
then proposed in a probabilistic framework that barimplemented on the basis of publicly
available information. The accuracy of this proliabc algorithm relative to a more
traditional GARCH statistical forecasting modetismonstrated with a NYISO case study.

A cross-scenario extension of this forecasting ratlgm is proposed in which

probabilities are assigned to different scenaridss permits forecasters to probabilistically
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average forecasts across distinct scenarios, atpwhe use of longer forecast horizons
and/or increasingly available historical data.

Chapter 3 is concerned with the issue of transomssnvestment to integrate
renewable energy. A negotiation methodology has be®posed between a renewable
energy developer and a transmission company faiinghaenewable energy uncertainties
and market risks.

The rate or payment, which is paid by the RE dewaloto the TransCo for
transmission cost recovery, is established via gotntion methodology based on Nash
Bargaining theory. Both the analytical and numeérszdutions of the transmission plan and
payment are derived for the negotiation. The peatity of the proposed approach and the
Nash Bargaining solution provide important investinguidance to both generation and
transmission developers.

If the projected generation performance and maskiees do not render an agreement,
a renewable energy subsidy may be needed to inGEntransmission projects to meet the
RPS requirement. The proposed approach can bebyseolicy makers to develop a proper
subsidy to RE developer for reaching an agreenmeatiegotiation.

The findings show that transmission investment pland payment rate can be
effectively determined in the negotiation using Nesh bargaining approach. By comparing
the negotiation and the centralized planning model, optimal subsidy policy can be
obtained to achieve maximum social surplus. Iti$® aecognized that the controllability of
subsidies is limited due to electricity price uriaetties when RE-GenCos sign no renewable

energy contracts.
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4.2 Future Work

The two approaches for transmission operation dadnmg are developed under
some assumptions. The future work can be aimed @k ngeneralized and practical
approaches with realistic considerations.

In Chapter 2, the proposed algorithm is targetecf@rgy-only markets; future work
should consider the incorporation of ancillary sms. Future work can also explore
additional factors, such as possible strategic lyupiier behaviors by generators. Moreover,
alternative forms for the probabilistic point insian test, a key building block of the
proposed algorithm, will be systematically studied.

In Chapter 3, future work can consider the use afemealistic scenarios for handling
renewable energy uncertainties by exploiting maieaaced scenario generation methods,
for example, a moment-matching method developgd@6h Future work could also be the
extension of this approach to a multi-player negjamin that consists of multiple market
participants including LSEs, policy makers, additib RE and transmission developers.
Furthermore, the issue of asymmetric accessibtanmdtion for different market participants

should be examined.
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APPENDIX. PROOF

Consider a wholesale power market operating ovesresmission grid wittN buses.
Assume for simplicity that each busas one fixed load denoted hyand one generator
with a real power level denoted By. Suppose, also, that each generatoas a quadratic
total cost function with coefficients andh . Finally, suppose the objective of the market
operator in each hour is to minimize the total eystost of meeting fixed load subject to an
injection-equals-load balance constraint, transimissline flow limits, and generator
operating capacity limits.

In particular, suppose the market operator atterttp@chieve its objective in each
hour by using the following standard DC-OPF forntiola that assumes a lossless

transmission system:

mn3 [ R+ b (59
st _: Fﬁ—i L=0: 2 0f6
iﬁij[ﬁ)—Lr]SFr: 4, forj=1T (61)
_iﬁ”[e_h]gﬁ‘: u, forj=1T (62)
) P<Caf: o, fori=1:N (63)
~-P<-Cag: o, fori=1:N (64)

In these equationg, denotes théseneration Shift Factor (GSRhat measures the

impact of 1MW injection by generatowon transmission ling Equality (60) represents the

system balance constraint ensuring total generatiaiches total load. The transmission line
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flow limit constraints in two directions are expsed in (61) and (62). The last two
inequalities (63) and (64) express each generaipper and lower operating capacity limits.

Proposition 11 Consider the standard DC-OPF formulation with fixledds and

guadratic generator cost functions described in)(8&ough (64). Suppose this standard
formulation is used by a market operator to deteensystem variable solutions. Then,
conditional on any given commitment-and-line scen&, the load space can be covered by
convex polytopes such that: (i) the interior of r@onvex polytope corresponds to a unique
system pattern; and (ii) within the interior of éaconvex polytope the system variable
solutions can be expressed as linear-affine funstmf the vector of distributed loads.

Proof Outline [44]: First note that the DC-OPF formulation can equmdly be

expressed in the following compact form:

ijn%PTHP+aTP (65)

st GP=W+ SL A, (66)
and,for i=2:(1+ 2N +2T)

GP<W+ SL A (67)
The notation in this general QP problem is desdriime[44]. TheKKT first-order

necessary conditions for (65)-(67) can then beesgad as follows:

HP+a+G'A=0 (68)

GP-W-SL=0 (69)
andfori=2:(1+ N+ ),

A(GP-W-$1=0 (70)

A 20 (71)
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GP-W- SL<0 (72)

Let A denote the set of indices corresponding to thevea¢binding) equality and
inequality constraints for the DC-OPF problem. he tnumber of binding unit capacity
constraints and line limit constraints are denoted R and M, respectively, then
Cardinality(a ) = 1#R+M. Let c* ,w* and s* represent the matrices correspondingato
Then,c* ,w* and s* have row dimension R+M and column dimensioN. Let A* denote

the multiplier vector correspondingAa Givena , equations (68)-(70)reduce to

GAP-W; - & =0 (73)
HP+a+(G*)'A" =0 (74)

Tendel [46] defines thénear independence constraint qualification (LIC{Q)y an
active set of constraints to be the assumptionthieste constraints are linearly independent.
For the problem at hand, LICQ holdsaf has full row rank. A generator that is at its uppe
capacity limit cannot at the same time be at igelolimit, hence [1 0 - - - 0Jand [-1 0 - - - O]
never co-exist. Moreover, the GSF matrix includadsi has linearly independent rows.
Thus, rankG") = min[1+R+M, N]. It follows thatG" has full row rank 1R+M if

1+R+ M< N (75)
The regularity condition (75) requires that the iwem of binding constraints

[1+R+M] does not exceed the number of decision varidlljes necessary condition for the
existence of the DC-OPF problem solutions assumextist in Proposition 1. Consequently,

(75) automatically holds under the assumptionsropésition 1.

AA :_[GA H(G )TT[GA H%a+W + 8 q (76)
P=-Hu+HG) [G HYG) | [C Ha+W + & | (77)
o<(-[6*H @ V] [G Ha+W + $ ], V Ay (78)
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WS> q;[— Ha+ H(G@)[ & H( &) |'[ & Ha+ W+ 'S H v d AL (79)
Given the LICQ (75) and the diagonal form of thetnimaH, G*H™(G*)" is
invertible. Equations (73) and (74) can then bedusederive explicit solutions fok* and

Pas shown in equations (76) and (77). Note thaktkekitions are linear-affine functions of

the load vectoL.

In summary, given a particular load vectgrexplicit solutions have been derived for
P and A" as linear-affine functions df. However, by construction, as long as the/sebf
active constraints remains unchanged in a neiglaookf the load vectarin the load space
L, the linear-affine form of these solutions remaiptimal. Such a neighborhood is given by
the feasible region determined from (71) and (B)bstitutingA”® and P from equations
(76) and (77) into (71) and (72), one obtains iraitjgs (78) and (79). The load vectdrs
satisfying the latter inequalities are the intetisecof a finite number of half-spaces in the

load space, and hence they form a convex polytofgas load space.
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